Isolation and biochemical characterisation of monomeric and dimeric photosystem II complexes from spinach and their relevance to the organisation of photosystem II in vivo

被引:183
作者
Hankamer, B
Nield, J
Zheleva, D
Boekema, E
Jansson, S
Barber, J
机构
[1] UNIV LONDON IMPERIAL COLL SCI TECHNOL & MED, WOLFSON LABS, DEPT BIOCHEM, LONDON SW7 2AY, ENGLAND
[2] UNIV GRONINGEN, GRONINGEN, NETHERLANDS
[3] UMEA UNIV, DEPT PLANT PHYSIOL, UMEA, SWEDEN
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 1997年 / 243卷 / 1-2期
关键词
dimer; photosynthesis; photosystem II; spinach; structure;
D O I
10.1111/j.1432-1033.1997.0422a.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Membranes enriched in photosystem II were isolated from spinach and further solubilised using n-octyl beta-D-glucopyranoside (OctGlc) and n-dodecyl beta-D-maltoside (DodGlc(2)). The OctGlc preparation had high rates of oxygen evolution and when subjected to size-exclusion HPLC and sucrose density gradient centrifugation, in the presence of DodGlc(2), separated into dimeric (430 kDa), monomeric (236 kDa) photosystem II cores and a fraction containing photosystem II light-harvesting complex (Lhcb) proteins. The dimeric core fraction was more stable, contained higher levels of chlorophyll, beta-carotene and plastoquinone per photosystem II reaction centre and had a higher oxygen-evolving activity than the monomeric cores. Their subunit composition was similar (CP43, CP47, D1, D2, cytochrome b 559 and several lower-molecular-mass components) except that the level of 33-kDa extrinsic protein was lower in the monomeric fraction. Direct solubilisation of photosystem-II-enriched membranes with DodGlc(2), followed by sucrose density gradient centrifugation, yielded a super complex (700 kDa) containing the dimeric form of the photosystem II core and Lhcb proteins: Lhcb1, Lhcb2, Lhcb4 (CP29), and Lhcb5 (CP26). Like the dimeric and monomeric photosystem II core complexes, the photosystem II-LHCII complex had lost the 23-kDa and 17-kDa extrinsic proteins, but maintained the 33-kDa protein and the ability to evolve oxygen. It is suggested, with a proposed model, that the isolated photosystem II-LHCII super complex represents an in vivo organisation that can sometimes form a lattice in granal membranes of the type detected by freeze-etch electron microscopy [Seibert, M., DeWit, M. & Staehelin, L. A. (1987) J. Cell Biol. 105, 2257-2265].
引用
收藏
页码:422 / 429
页数:8
相关论文
共 45 条
[1]   The structure and function of the chloroplast photosynthetic membrane - A model for the domain organization [J].
Albertsson, PA .
PHOTOSYNTHESIS RESEARCH, 1995, 46 (1-2) :141-149
[2]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[3]   LIGHT-INDUCED DEGRADATION OF D2 PROTEIN IN ISOLATED PHOTOSYSTEM-II REACTION CENTER COMPLEX [J].
BARBATO, R ;
FRISO, G ;
DELAURETO, PP ;
FRIZZO, A ;
RIGONI, F ;
GIACOMETTI, GM .
FEBS LETTERS, 1992, 311 (01) :33-36
[4]   CHARACTERIZATION OF A PS-II REACTION CENTER ISOLATED FROM THE CHLOROPLASTS OF PISUM-SATIVUM [J].
BARBER, J ;
CHAPMAN, DJ ;
TELFER, A .
FEBS LETTERS, 1987, 220 (01) :67-73
[5]  
BASSI R, 1989, EUR J CELL BIOL, V50, P84
[6]   BIOCHEMICAL AND FUNCTIONAL-PROPERTIES OF PHOTOSYSTEM-II IN AGRANAL MEMBRANES FROM MAIZE MESOPHYLL AND BUNDLE-SHEATH CHLOROPLASTS [J].
BASSI, R ;
MARQUARDT, J ;
LAVERGNE, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 233 (03) :709-719
[7]   A HIGHLY RESOLVED, OXYGEN-EVOLVING PHOTOSYSTEM-II PREPARATION FROM SPINACH THYLAKOID MEMBRANES - ELECTRON-PARAMAGNETIC-RES AND ELECTRON-TRANSPORT PROPERTIES [J].
BERTHOLD, DA ;
BABCOCK, GT ;
YOCUM, CF .
FEBS LETTERS, 1981, 134 (02) :231-234
[8]   SUPRAMOLECULAR STRUCTURE OF THE PHOTOSYSTEM-II COMPLEX FROM GREEN PLANTS AND CYANOBACTERIA [J].
BOEKEMA, EJ ;
HANKAMER, B ;
BALD, D ;
KRUIP, J ;
NIELD, J ;
BOONSTRA, AF ;
BARBER, J ;
ROGNER, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (01) :175-179
[9]   THE STRUCTURE AND FUNCTION OF CPA-1 AND CPA-2 IN PHOTOSYSTEM-II [J].
BRICKER, TM .
PHOTOSYNTHESIS RESEARCH, 1990, 24 (01) :1-13
[10]  
DAINESE P, 1991, J BIOL CHEM, V266, P8136