Intelligent Data Acquisition Blends Targeted and Discovery Methods

被引:41
作者
Bailey, Derek J. [1 ,4 ]
McDevitt, Molly T. [2 ,3 ]
Westphall, Michael S. [4 ]
Pagliarini, David J. [2 ]
Coon, Joshua J. [1 ,3 ,4 ]
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Biomol Chem, Madison, WI 53706 USA
[4] Univ Wisconsin, Genome Ctr Wisconsin, Madison, WI 53706 USA
基金
美国国家卫生研究院;
关键词
nano-LC MS/MS; elution order alignment; data-dependent acquisition; peptide identification; real-time data analysis; discovery; target; MASS-SPECTROMETRY; QUANTITATIVE-ANALYSIS; HIGH-RESOLUTION; PROTEOMICS; PREDICTION; PEPTIDES; IDENTIFICATIONS; REPRODUCIBILITY; WORKFLOWS; STRATEGY;
D O I
10.1021/pr401278j
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A mass spectrometry (MS) method is described here that can reproducibly identify hundreds of peptides across multiple experiments. The method uses intelligent data acquisition to precisely target peptides while simultaneously identifying thousands of other, nontargeted peptides in a single nano-LC-MS/MS experiment. We introduce an online peptide elution order alignment algorithm that targets peptides based on their relative elution order, eliminating the need for retention-time-based scheduling. We have applied this method to target 500 mouse peptides across six technical replicate nano-LC-MS/MS experiments and were able to identify 440 of these in all six, compared with only 256 peptides using data-dependent acquisition (DDA). A total of 3757 other peptides were also identified within the same experiment, illustrating that this hybrid method does not eliminate the novel discovery advantages of DDA. The method was also tested on a set of mice in biological quadruplicate and increased the number of identified target peptides in all four mice by over 80% (826 vs 459) compared with the standard DDA method. We envision real-time data analysis as a powerful tool to improve the quality and reproducibility of proteomic data sets.
引用
收藏
页码:2152 / 2161
页数:10
相关论文
共 58 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]  
Aebersold R, 2009, NAT METHODS, V6, P411, DOI [10.1038/nmeth.f.255, 10.1038/NMETH.F.255]
[3]   Instant spectral assignment for advanced decision tree-driven mass spectrometry [J].
Bailey, Derek J. ;
Rose, Christopher M. ;
McAlister, Graeme C. ;
Brumbaugh, Justin ;
Yu, Pengzhi ;
Wenger, Craig D. ;
Westphall, Michael S. ;
Thomson, James A. ;
Coon, Joshua J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (22) :8411-8416
[4]   Quantitative mass spectrometry in proteomics: a critical review [J].
Bantscheff, Marcus ;
Schirle, Markus ;
Sweetman, Gavain ;
Rick, Jens ;
Kuster, Bernhard .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2007, 389 (04) :1017-1031
[5]   Maximizing Peptide Identification Events in Proteomic Workflows Using Data-Dependent Acquisition (DDA) [J].
Bateman, Nicholas W. ;
Goulding, Scott P. ;
Shulman, Nicholas J. ;
Gadok, Avinash K. ;
Szumlinski, Karen K. ;
MacCoss, Michael J. ;
Wu, Christine C. .
MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (01) :329-338
[6]   Improving large-scale proteomics by clustering of mass spectrometry data [J].
Beer, I ;
Barnea, E ;
Ziv, T ;
Admon, A .
PROTEOMICS, 2004, 4 (04) :950-960
[7]   Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry [J].
Elias, Joshua E. ;
Gygi, Steven P. .
NATURE METHODS, 2007, 4 (03) :207-214
[8]   AN APPROACH TO CORRELATE TANDEM MASS-SPECTRAL DATA OF PEPTIDES WITH AMINO-ACID-SEQUENCES IN A PROTEIN DATABASE [J].
ENG, JK ;
MCCORMACK, AL ;
YATES, JR .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1994, 5 (11) :976-989
[9]   Targeted Proteomic Quantification on Quadrupole-Orbitrap Mass Spectrometer [J].
Gallien, Sebastien ;
Duriez, Elodie ;
Crone, Catharina ;
Kellmann, Markus ;
Moehring, Thomas ;
Domon, Bruno .
MOLECULAR & CELLULAR PROTEOMICS, 2012, 11 (12) :1709-1723
[10]   Open mass spectrometry search algorithm [J].
Geer, LY ;
Markey, SP ;
Kowalak, JA ;
Wagner, L ;
Xu, M ;
Maynard, DM ;
Yang, XY ;
Shi, WY ;
Bryant, SH .
JOURNAL OF PROTEOME RESEARCH, 2004, 3 (05) :958-964