Mixing property of triangular billiards

被引:95
作者
Casati, G
Prosen, T
机构
[1] Univ Insubria, Int Ctr Study Dynam Syst, I-22100 Como, Italy
[2] Ist Nazl Fis Mat, Milan, Italy
[3] Ist Nazl Fis Nucl, Unita Milano, Milan, Italy
[4] Univ Ljubljana, Fac Math & Phys, Dept Phys, Ljubljana 1111, Slovenia
关键词
D O I
10.1103/PhysRevLett.83.4729
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present numerical evidence which strongly suggests that irrational triangular billiards (all angles irrational with pi) are mixing. Since these systems are known to have zero Kolmogorov-Sinai entropy, they may play an important role in understanding the statistical relaxation process.
引用
收藏
页码:4729 / 4732
页数:4
相关论文
共 9 条
[1]   Correlation decay and return time statistics [J].
Artuso, R .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 131 (1-4) :68-77
[2]   Numerical study on ergodic properties of triangular billiards [J].
Artuso, R ;
Casati, G ;
Guarneri, I .
PHYSICAL REVIEW E, 1997, 55 (06) :6384-6390
[3]  
CHIRIKOV BV, 1981, PPPLTRANS133
[4]  
Fermi E., 1955, LA1940
[5]  
GUTKIN E, 1988, LECT NOTES MATH, V1345, P163
[6]   Billiards in polygons: Survey of recent results [J].
Gutkin, E .
JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (1-2) :7-26
[7]   LONG-TIME CORRELATIONS IN THE STOCHASTIC REGIME [J].
KARNEY, CFF .
PHYSICA D, 1983, 8 (03) :360-380
[8]  
KORNFELD P, 1982, ERGODIC THEORY, P64102
[9]   New universal aspects of diffusion in strongly chaotic systems [J].
Robnik, M ;
Dobnikar, J ;
Rapisarda, A ;
Prosen, T ;
Petkovsek, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23) :L803-L813