Permutation entropy: A natural complexity measure for time series

被引:3493
作者
Bandt, C [1 ]
Pompe, B
机构
[1] Univ Greifswald, Inst Math, Greifswald, Germany
[2] Univ Greifswald, Inst Phys, Greifswald, Germany
关键词
D O I
10.1103/PhysRevLett.88.174102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce complexity parameters for time series based on comparison of neighboring values. The definition directly applies to arbitrary real-world data. For some well-known chaotic dynamical systems it is shown that our complexity behaves similar to Lyapunov exponents, and is particularly useful in the presence of dynamical or observational noise. The advantages of our method are its simplicity, extremely fast calculation, robustness, and invariance with respect to nonlinear monotonous transformations.
引用
收藏
页数:4
相关论文
共 18 条
[1]  
Abarbanel H, 1996, ANAL OBSERVED CHAOTI
[2]   THE ENTROPY PROFILE - A FUNCTION DESCRIBING STATISTICAL DEPENDENCES [J].
BANDT, C ;
POMPE, B .
JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (3-4) :967-983
[3]  
BOFETTA G, IN PRESS
[4]   Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series [J].
Bollt, EM ;
Stanford, T ;
Lai, YC ;
Zyczkowski, K .
PHYSICAL REVIEW LETTERS, 2000, 85 (16) :3524-3527
[5]  
Brudno A. A., 1983, T MOSCOW MATH SOC, V44, P127
[6]  
Campbell L. L., 1966, Z WAHRSCHEINLICHKEIT, V6, P113
[7]  
COLLET P, 1980, ITERATED MAPS INTERV
[8]   PLATEAU ONSET FOR CORRELATION DIMENSION - WHEN DOES IT OCCUR [J].
DING, MZ ;
GREBOGI, C ;
OTT, E ;
SAUER, T ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1993, 70 (25) :3872-3875
[9]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[10]   Orbit complexity and data compression [J].
Galatolo, S .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2001, 7 (03) :477-486