Fractional reaction-diffusion

被引:268
作者
Henry, BI [1 ]
Wearne, SL [1 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sch Math, Sydney, NSW 2052, Australia
关键词
D O I
10.1016/S0378-4371(99)00469-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a fractional reaction-diffusion equation from a continuous-time random walk model with temporal memory and sources. The equation provides a general model for reaction-diffusion phenomena with anomalous diffusion such as occurs in spatially inhomogeneous environments. As a first investigation of this equation ae consider the special case of single species fractional reaction-diffusion in one dimension and show that the fractional diffusion does not by itself precipitate a Turing instability. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:448 / 455
页数:8
相关论文
共 19 条
[1]  
Caputo M., 1969, Elasticitae dissipazione
[2]  
Feller W., 1966, INTRO PROBABILITY TH, V2
[3]   FRACTIONAL DIFFUSION EQUATION FOR TRANSPORT PHENOMENA IN RANDOM-MEDIA [J].
GIONA, M ;
ROMAN, HE .
PHYSICA A, 1992, 185 (1-4) :87-97
[4]   DIFFUSION IN DISORDERED MEDIA [J].
HAVLIN, S ;
BENAVRAHAM, D .
ADVANCES IN PHYSICS, 1987, 36 (06) :695-798
[5]  
HUGHES BD, 1995, RANDOM WALKS RANDOM, pCH5
[6]  
KENKRE VM, 1973, J STAT PHYS, V9, P1
[7]   DERIVATION OF THE CONTINUOUS-TIME RANDOM-WALK EQUATION [J].
KLAFTER, J ;
SILBEY, R .
PHYSICAL REVIEW LETTERS, 1980, 44 (02) :55-58
[8]   STOCHASTIC PATHWAY TO ANOMALOUS DIFFUSION [J].
KLAFTER, J ;
BLUMEN, A ;
SHLESINGER, MF .
PHYSICAL REVIEW A, 1987, 35 (07) :3081-3085
[9]  
KLAFTER K, 1997, PHYSICS COMPLEX SYST, P85
[10]   Fractional diffusion: Exact representations of spectral functions [J].
Metzler, R ;
Nonnenmacher, TF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (04) :1089-1093