Robust Estimation of Water Chlorophyll Concentrations With Gaussian Process Regression and IOWA Aggregation Operators

被引:22
作者
Bazi, Yakoub [1 ]
Alajlan, Naif [1 ]
Melgani, Farid [2 ]
AlHichri, Haikel [1 ]
Yager, Ronald R. [3 ,4 ]
机构
[1] King Saud Univ, ALISR Lab, Coll Comp & Informat Sci, Riyadh 11543, Saudi Arabia
[2] Univ Trento, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy
[3] Iona Coll, Inst Machine Intelligence, New Rochelle, NY 10801 USA
[4] King Saud Univ, Riyadh 11543, Saudi Arabia
关键词
Chlorophyll-a concentrations; Gaussian process regression (GPR); induced ordered weighted averaging (IOWA) operators; MODIS; SeaWIFS; BIOPHYSICAL PARAMETERS; CLASSIFICATION; RETRIEVAL; FUSION; VARIABILITY; ALGORITHMS;
D O I
10.1109/JSTARS.2014.2327003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a new framework for estimating water chlorophyll concentrations in remote sensing data based on Gaussian process regression (GPR) and induced ordered weighted averaging(IOWA) operators. First, we construct an ensemble of GPR estimators modeled with different covariance functions. Then, in a second step, we aggregate the predictions of these estimators using IOWA operators. To learn the weights associated with these nonlinear operators, we propose three different approaches called IOWA(MVO), IOWA(MOP), and IOWA(PA). The IOWA(MVO) is based on the minimization of the variance of the weights with a given orness level. In IOWA(MOP), we replace the orness level constraint by an objective related to data fitting. Then we solve the modified optimization problem using a multiobjective optimization evolutionary algorithm based on decomposition. Finally, in IOWA(PA), we generate the weights directly from the confidence measures (i.e., output variances) provided by the set of GPR estimators using the concept of prioritization aggregation. Experimental results on in situ and satellite data are reported and discussed.
引用
收藏
页码:3019 / 3028
页数:10
相关论文
共 40 条
[2]   Using OWA Fusion Operators for the Classification of Hyperspectral Images [J].
Alajlan, Naif ;
Bazi, Yakoub ;
AlHichri, Haikel S. ;
Melgani, Farid ;
Yager, Ronald R. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) :602-614
[3]   Fusion of supervised and unsupervised learning for improved classification of hyperspectral images [J].
Alajlan, Naif ;
Bazi, Yakoub ;
Melgani, Farid ;
Yager, Ronald R. .
INFORMATION SCIENCES, 2012, 217 :39-55
[4]  
[Anonymous], 2001, THESIS MIT CAMBRIDGE
[5]  
[Anonymous], 2006, GAUSSIAN PROCESSES M, DOI DOI 10.1142/S0129065704001899
[6]   A multi-sensor approach for the on-orbit validation of ocean color satellite data products [J].
Bailey, Sean W. ;
Werdell, P. Jeremy .
REMOTE SENSING OF ENVIRONMENT, 2006, 102 (1-2) :12-23
[7]   An empirical comparison of voting classification algorithms: Bagging, boosting, and variants [J].
Bauer, E ;
Kohavi, R .
MACHINE LEARNING, 1999, 36 (1-2) :105-139
[8]   Semisupervised PSO-SVM regression for biophysical parameter estimation [J].
Bazi, Yakoub ;
Melgani, Farid .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (06) :1887-1895
[9]   Improved Estimation of Water Chlorophyll Concentration With Semisupervised Gaussian Process Regression [J].
Bazi, Yakoub ;
Alajlan, Naif ;
Melgani, Farid .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (07) :2733-2743
[10]   Gaussian Process Approach to Remote Sensing Image Classification [J].
Bazi, Yakoub ;
Melgani, Farid .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (01) :186-197