Robust Estimation of Water Chlorophyll Concentrations With Gaussian Process Regression and IOWA Aggregation Operators

被引:22
作者
Bazi, Yakoub [1 ]
Alajlan, Naif [1 ]
Melgani, Farid [2 ]
AlHichri, Haikel [1 ]
Yager, Ronald R. [3 ,4 ]
机构
[1] King Saud Univ, ALISR Lab, Coll Comp & Informat Sci, Riyadh 11543, Saudi Arabia
[2] Univ Trento, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy
[3] Iona Coll, Inst Machine Intelligence, New Rochelle, NY 10801 USA
[4] King Saud Univ, Riyadh 11543, Saudi Arabia
关键词
Chlorophyll-a concentrations; Gaussian process regression (GPR); induced ordered weighted averaging (IOWA) operators; MODIS; SeaWIFS; BIOPHYSICAL PARAMETERS; CLASSIFICATION; RETRIEVAL; FUSION; VARIABILITY; ALGORITHMS;
D O I
10.1109/JSTARS.2014.2327003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a new framework for estimating water chlorophyll concentrations in remote sensing data based on Gaussian process regression (GPR) and induced ordered weighted averaging(IOWA) operators. First, we construct an ensemble of GPR estimators modeled with different covariance functions. Then, in a second step, we aggregate the predictions of these estimators using IOWA operators. To learn the weights associated with these nonlinear operators, we propose three different approaches called IOWA(MVO), IOWA(MOP), and IOWA(PA). The IOWA(MVO) is based on the minimization of the variance of the weights with a given orness level. In IOWA(MOP), we replace the orness level constraint by an objective related to data fitting. Then we solve the modified optimization problem using a multiobjective optimization evolutionary algorithm based on decomposition. Finally, in IOWA(PA), we generate the weights directly from the confidence measures (i.e., output variances) provided by the set of GPR estimators using the concept of prioritization aggregation. Experimental results on in situ and satellite data are reported and discussed.
引用
收藏
页码:3019 / 3028
页数:10
相关论文
共 40 条
[21]   On the Stress Function-Based OWA Determination Method With Optimization Criteria [J].
Liu, Xinwang ;
Yu, Shui .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (01) :246-257
[22]   Markovian fusion approach to robust unsupervised change detection in remotely sensed imagery [J].
Melgani, Farid ;
Bazi, Yakoub .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (04) :457-461
[23]   Ocean color chlorophyll algorithms for SeaWiFS [J].
O'Reilly, JE ;
Maritorena, S ;
Mitchell, BG ;
Siegel, DA ;
Carder, KL ;
Garver, SA ;
Kahru, M ;
McClain, C .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1998, 103 (C11) :24937-24953
[24]  
OReilly J. E., 1997, P SEAWIFS BIOOPT ALG
[25]   Active Learning Methods for Biophysical Parameter Estimation [J].
Pasolli, Edoardo ;
Melgani, Farid ;
Alajlan, Naif ;
Bazi, Yakoub .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (10) :4071-4084
[26]   Gaussian Process Regression for Estimating Chlorophyll Concentration in Subsurface Waters From Remote Sensing Data [J].
Pasolli, Luca ;
Melgani, Farid ;
Blanzieri, Enrico .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (03) :464-468
[27]   Bootstrap-inspired techniques in computational intelligence [J].
Polikar, Robi .
IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (04) :59-72
[28]   Regional Objective Analysis for Merging High-Resolution MERIS, MODIS/Aqua, and SeaWiFS Chlorophyll-a Data From 1998 to 2008 on the European Atlantic Shelf [J].
Saulquin, Bertrand ;
Gohin, Francis ;
Garrello, Rene .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (01) :143-154
[29]   Gaussian Process Retrieval of Chlorophyll Content From Imaging Spectroscopy Data [J].
Verrelst, Jochem ;
Alonso, Luis ;
Rivera Caicedo, Juan Pablo ;
Moreno, Jose ;
Camps-Valls, Gustavo .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) :867-874
[30]   Retrieval of Vegetation Biophysical Parameters Using Gaussian Process Techniques [J].
Verrelst, Jochem ;
Alonso, Luis ;
Camps-Valls, Gustavo ;
Delegido, Jesus ;
Moreno, Jose .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05) :1832-1843