Assessment of the electrochemical behavior of two-dimensional networks of single-walled carbon nanotubes

被引:29
作者
Wilson, Neil R.
Guille, Manon
Dumitrescu, Ioana
Fernandez, Virginia R.
Rudd, Nicola C.
Williams, Cara G.
Unwin, Patrick R.
Macpherson, Julie V. [1 ]
机构
[1] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1021/ac0610661
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Scanning electrochemical microscopy (SECM) has been employed in the feedback mode to assess the electrochemical behavior of two-dimensional networks of single-walled carbon nanotubes (SWNTs). It is shown that, even though the network comprises both metallic and semi-conducting SWNTs, at high density (well above the percolation threshold for metallic SWNTs) and with approximately millimolar concentrations of redox species the network behaves as a thin metallic film, irrespective of the formal potential of the redox couple. This result is particularly striking since the fractional surface coverage of SWNTs is only similar to 1% and SECM delivers high mass transport rates to the network. Finite element simulations demonstrate that under these conditions diffusional overlap between neighboring SWNTs is significant so that planar diffusion prevails in the gap between the SECM tip and the underlying SWNT substrate. The SECM feedback response diminishes at higher concentrations of the redox species. However, wet gate measurements show that at the solution potentials of interest the conductivity is sufficiently high that lateral conductivity is not expected to be limiting. This suggests that reaction kinetics may be a limiting factor, especially since the low surface coverage of the SWNT network results in large fluxes to the SWNTs, which are characterized by a low density of electronic states. For electroanalytical purposes, significantly, two-dimensional SWNT networks can be considered as metallic films for typical millimolar concentrations employed in amperometry and voltammetry. Moreover, SWNT networks can be inexpensively and easily formed over large scales, opening up the possibility of further electroanalytical applications.
引用
收藏
页码:7006 / 7015
页数:10
相关论文
共 48 条
[1]   A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor [J].
Abraham, JK ;
Philip, B ;
Witchurch, A ;
Varadan, VK ;
Reddy, CC .
SMART MATERIALS & STRUCTURES, 2004, 13 (05) :1045-1049
[2]   CHARGE-TRANSFER AT PARTIALLY BLOCKED SURFACES - A MODEL FOR THE CASE OF MICROSCOPIC ACTIVE AND INACTIVE SITES [J].
AMATORE, C ;
SAVEANT, JM ;
TESSIER, D .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1983, 147 (1-2) :39-51
[3]   Scanning electrochemical microscopy (SECM): An investigation of the effects of tip geometry on amperometric tip response [J].
Amphlett, JL ;
Denuault, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (49) :9946-9951
[4]   Transparent and flexible carbon nanotube transistors [J].
Artukovic, E ;
Kaempgen, M ;
Hecht, DS ;
Roth, S ;
GrUner, G .
NANO LETTERS, 2005, 5 (04) :757-760
[5]   Molecular electronics with carbon nanotubes [J].
Avouris, P .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1026-1034
[6]   SCANNING ELECTROCHEMICAL MICROSCOPY - INTRODUCTION AND PRINCIPLES [J].
BARD, AJ ;
FAN, FRF ;
KWAK, J ;
LEV, O .
ANALYTICAL CHEMISTRY, 1989, 61 (02) :132-138
[7]  
Bard AJ, 2001, Electrochemical methods: fundamentals and applications, P87
[8]   Scanning electrochemistry microscopy (SECM) in the study of electron transfer kinetics at liquid/liquid interfaces: Beyond the constant composition approximation [J].
Barker, AL ;
Unwin, PR ;
Amemiya, S ;
Zhou, JF ;
Bard, AJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (34) :7260-7269
[9]   Flexible nanotube electronics [J].
Bradley, K ;
Gabriel, JCP ;
Grüner, G .
NANO LETTERS, 2003, 3 (10) :1353-1355
[10]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989