A feature-based approach to modeling proteinprotein interaction hot spots

被引:132
作者
Cho, Kyu-il [1 ]
Kim, Dongsup [1 ]
Lee, Doheon [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Taejon 305701, South Korea
关键词
STRUCTURALLY CONSERVED RESIDUES; BINDING-ENERGY; DATABASE; PI; COMPLEMENTARITY; FREQUENCIES; PRINCIPLES; INTERFACES; TRANSIENT; PROTEINS;
D O I
10.1093/nar/gkp132
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to related interactions, especially interactions.
引用
收藏
页码:2672 / 2687
页数:16
相关论文
共 64 条
[1]   Ten thousand interactions for the molecular biologist [J].
Aloy, P ;
Russell, RB .
NATURE BIOTECHNOLOGY, 2004, 22 (10) :1317-1321
[2]   SCOP database in 2004: refinements integrate structure and sequence family data [J].
Andreeva, A ;
Howorth, D ;
Brenner, SE ;
Hubbard, TJP ;
Chothia, C ;
Murzin, AG .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D226-D229
[3]  
[Anonymous], SCI STKE
[4]   AN INVESTIGATION OF PROTEIN SUBUNIT AND DOMAIN INTERFACES [J].
ARGOS, P .
PROTEIN ENGINEERING, 1988, 2 (02) :101-113
[5]  
BAGLEY SC, 1995, PROTEIN SCI, V4, P622
[6]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[7]   HYDROGEN-BONDING IN GLOBULAR-PROTEINS [J].
BAKER, EN ;
HUBBARD, RE .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1984, 44 (02) :97-179
[8]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[9]   Anatomy of hot spots in protein interfaces [J].
Bogan, AA ;
Thorn, KS .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (01) :1-9
[10]   Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? [J].
Caffrey, DR ;
Somaroo, S ;
Hughes, JD ;
Mintseris, J ;
Huang, ES .
PROTEIN SCIENCE, 2004, 13 (01) :190-202