Minimal models of integrable lattice theory and truncated functional equations

被引:14
作者
Belavin, A [1 ]
Stroganov, Y
机构
[1] LD Landau Theoret Phys Inst, Chernogolovka 142432, Moscow Oblast, Russia
[2] Inst High Energy Phys, Protvino, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/S0370-2693(99)01150-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the integrable XXZ model with special open boundary conditions. We obtain the quantum group reduction of this model in roots of unity and use it to define minimal models of the integrable lattice theory. After this quantum group reduction, the Sklyanin transfer matrices satisfy a closed system of truncated functional relations. We solve these equations for the simplest case. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:281 / 286
页数:6
相关论文
共 22 条
[1]   SURFACE EXPONENTS OF THE QUANTUM XXZ, ASHKIN-TELLER AND POTTS MODELS [J].
ALCARAZ, FC ;
BARBER, MN ;
BATCHELOR, MT ;
BAXTER, RJ ;
QUISPEL, GRW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18) :6397-6409
[2]   CONFORMAL-INVARIANCE AND THE SPECTRUM OF THE XXZ CHAIN [J].
ALCARAZ, FC ;
BARBER, MN ;
BATCHELOR, MT .
PHYSICAL REVIEW LETTERS, 1987, 58 (08) :771-774
[3]  
ALCARAZ FC, IN PRESS
[4]   Integrable structure of conformal field theory III. The Yang-Baxter relation [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (02) :297-324
[5]   Integrable structure of conformal field theory, quantum KdV theory and Thermodynamic Bethe Ansatz [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (02) :381-398
[6]   Integrable structure of conformal field theory - II. Q-operator and DDV equation [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 190 (02) :247-278
[7]   Interaction-round-a-face models with fixed boundary conditions: The ABF fusion hierarchy [J].
Behrend, RE ;
Pearce, PA ;
OBrien, DL .
JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (1-2) :1-48
[8]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[9]   On the fermionic quasi-particle interpretation in minimal models of conformal field theory [J].
Belavin, AA ;
Fring, A .
PHYSICS LETTERS B, 1997, 409 (1-4) :199-205
[10]   FACTORIZING PARTICLES ON A HALF-LINE AND ROOT SYSTEMS [J].
CHEREDNIK, IV .
THEORETICAL AND MATHEMATICAL PHYSICS, 1984, 61 (01) :977-983