Structural Basis of m7GpppG Binding to Poly(A)-Specific Ribonuclease

被引:53
作者
Wu, Mousheng [1 ,2 ]
Nilsson, Per [3 ]
Henriksson, Niklas [3 ]
Niedzwiecka, Anna [4 ,5 ]
Lim, Meng Kiat [1 ]
Cheng, Zhihong [1 ]
Kokkoris, Kyriakos [3 ]
Virtanen, Anders [3 ]
Song, Haiwei [1 ,2 ]
机构
[1] Natl Univ Singapore, Inst Mol & Cell Biol, Singapore 117548, Singapore
[2] Natl Univ Singapore, Dept Biol Sci, Singapore 117548, Singapore
[3] Uppsala Univ, Dept Cell & Mol Biol, Uppsala, Sweden
[4] Warsaw Univ, Polish Acad Sci, Inst Phys, Warsaw, Poland
[5] Warsaw Univ, Inst Expt Phys, Warsaw, Poland
基金
瑞典研究理事会;
关键词
MESSENGER-RNA CAP; POLY(A) BINDING; RECOGNITION MOTIF; CRYSTAL-STRUCTURE; PROTEIN EIF4E; ACTIVE-SITE; RRM DOMAIN; DEADENYLATION; MECHANISM; REFINEMENT;
D O I
10.1016/j.str.2008.11.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Poly(A)-specific ribonuclease (PARN) is a homodimeric, processive, and cap-interacting 3' exoribonuclease that efficiently degrades eukaryotic mRNA poly(A) tails. The crystal structure of a C-terminally truncated PARN in complex with m(7) GpppG reveals that, in one subunit, m(7) GpppG binds to a cavity formed by the RRM domain and the nuclease domain, whereas in the other subunit, it binds almost exclusively to the RRM domain. Importantly, our structural and competition data show that the cap-binding site overlaps with the active site in the nuclease domain. Mutational analysis demonstrates that residues involved in m(7)G recognition are crucial for cap-stimulated deadenylation activity, and those involved in both cap and poly(A) binding are important for catalysis. A modeled PARN, which shows that the RRM domain from one subunit and the R3H domain from the other subunit enclose the active site, provides a structural foundation for further studies to elucidate the mechanism of PARN-mediated deadenylation.
引用
收藏
页码:276 / 286
页数:11
相关论文
共 41 条
[1]   INVITRO DEADENYLATION OF MAMMALIAN MESSENGER-RNA BY A HELA-CELL 3' EXONUCLEASE [J].
ASTROM, J ;
ASTROM, A ;
VIRTANEN, A .
EMBO JOURNAL, 1991, 10 (10) :3067-3071
[2]   Inhibition of mRNA deadenylation by the nuclear cap binding complex (CBC) [J].
Balatsos, NAA ;
Nilsson, P ;
Mazza, C ;
Cusack, S ;
Virtanen, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (07) :4517-4522
[3]  
BRUNGER AT, 1998, ACTA CRYSTALLOGR D, V50, P760
[4]   Crystal structures of human DcpS in ligand-free and m7 GDP-bound forms suggest a dynamic mechanism for scavenger mRNA decapping [J].
Chen, N ;
Walsh, MA ;
Liu, YY ;
Parker, R ;
Song, HW .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 347 (04) :707-718
[5]   Cap-dependent deadenylation of mRNA [J].
Dehlin, E ;
Wormington, M ;
Körner, CG ;
Wahle, E .
EMBO JOURNAL, 2000, 19 (05) :1079-1086
[6]   Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods [J].
delaFortelle, E ;
Bricogne, G .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :472-494
[7]  
Eftink MR, 1997, METHOD ENZYMOL, V278, P221
[8]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[9]   Interaction between a poly(A)-specific ribonuclease and the 5′ cap influences mRNA deadenylation rates in vitro [J].
Gao, M ;
Fritz, DT ;
Ford, LP ;
Wilusz, J .
MOLECULAR CELL, 2000, 5 (03) :479-488
[10]   The highways and byways of mRNA decay [J].
Garneau, Nicole L. ;
Wilusz, Jeffrey ;
Wilusz, Carol J. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2007, 8 (02) :113-126