Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots

被引:66
作者
Medintz, Igor L.
Sapsford, Kim E.
Clapp, Aaron R.
Pons, Thomas
Higashiya, Seiichiro
Welch, John T.
Mattoussi, Hedi
机构
[1] USN, Res Lab, Ctr Biomol Sci & Engn, Washington, DC 20375 USA
[2] USN, Res Lab, Div Opt Sci, Washington, DC 20375 USA
[3] George Mason Univ, Manassas, VA USA
[4] Johns Hopkins Univ, Chem & Biomol Engn Dept, Baltimore, MD 21218 USA
[5] SUNY Albany, Dept Chem, Albany, NY 12222 USA
关键词
D O I
10.1021/jp060611z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate the use of a series of engineered, variable-length de novo polypeptides to discretely immobilize luminescent semiconductor nanocrystals or quantum dots (QDs) onto functional surfaces. The polypeptides express N-terminal dicysteine and C-terminal hexahistidine residues that flank a variable number ( 1, 3, 5, 7, 14, 21, 28, or 35) of core beta-strand repeats, with tyrosine, glutamic acid, histidine, and lysine residues located at the turns. Polypeptides have molecular weights ranging from 4 to 83 kDa and retain a rigid structure based on the antiparallel beta-sheet motif. We first use a series of dye-labeled polypeptides to test and characterize their self-assembly onto hydrophilic CdSe-ZnS QDs using fluorescence resonance energy transfer (FRET). Results indicate that peptides maintain their beta-sheet conformation after self-assembly onto the QD surfaces, regardless of their length. We then immobilize biotinylated derivatives of these polypeptides on a NeutrAvidin-functionalized substrate and use them to capture QDs via specific interactions between the peptides' polyhistidine residues and the nanocrystal surface. We found that each of the polypeptides was able to efficiently capture QDs, with a clear correlation between the density of the surface-tethered peptide and the capacity for nanocrystal capture. The versatility of this capture strategy is highlighted by the creation of a variety of one- and two-dimensional polypeptide-QD structures as well as a self-assembled surface-immobilized FRET-based nutrient sensor.
引用
收藏
页码:10683 / 10690
页数:8
相关论文
共 45 条
[1]   Highly fluorescent streptavidin-coated CdSe nanoparticles:: Preparation in water, characterization, and micropatterning [J].
Bäumle, M ;
Stamou, D ;
Segura, JM ;
Hovius, R ;
Vogel, H .
LANGMUIR, 2004, 20 (10) :3828-3831
[2]   Chemistry and properties of nanocrystals of different shapes [J].
Burda, C ;
Chen, XB ;
Narayanan, R ;
El-Sayed, MA .
CHEMICAL REVIEWS, 2005, 105 (04) :1025-1102
[3]  
Cantor EJ, 1997, J BIOCHEM, V122, P217
[4]   Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors [J].
Clapp, AR ;
Medintz, IL ;
Mauro, JM ;
Fisher, BR ;
Bawendi, MG ;
Mattoussi, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (01) :301-310
[5]   Forster resonance energy transfer investigations using quantum-dot fluorophores [J].
Clapp, AR ;
Medintz, IL ;
Mattoussi, H .
CHEMPHYSCHEM, 2006, 7 (01) :47-57
[6]   Quantum dot-based multiplexed fluorescence resonance energy transfer [J].
Clapp, AR ;
Medintz, IL ;
Uyeda, HT ;
Fisher, BR ;
Goldman, ER ;
Bawendi, MG ;
Mattoussi, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (51) :18212-18221
[7]   Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon [J].
Constantine, CA ;
Gattás-Asfura, KM ;
Mello, SV ;
Crespo, G ;
Rastogi, V ;
Cheng, TC ;
De Frank, JJ ;
Leblanc, RM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (50) :13762-13764
[8]   Integration of colloidal nanocrystals into lithographically patterned devices [J].
Cui, Y ;
Bjork, MT ;
Liddle, JA ;
Sonnichsen, C ;
Boussert, B ;
Alivisatos, AP .
NANO LETTERS, 2004, 4 (06) :1093-1098
[9]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[10]   A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor [J].
Goldman, ER ;
Medintz, IL ;
Whitley, JL ;
Hayhurst, A ;
Clapp, AR ;
Uyeda, HT ;
Deschamps, JR ;
Lassman, ME ;
Mattoussi, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (18) :6744-6751