Convertible static compensator performance studies on the NY state transmission system

被引:47
作者
Arabi, S [1 ]
Hamadanizadeh, H
Fardanesh, B
机构
[1] Powerteh Labs Inc, Surrey, BC V3W 7R7, Canada
[2] New York Power Author, White Plains, NY 10601 USA
关键词
CSC; eigenvalue analysis; FACTS; IPFC; SSSC; STATCOM; transient stability; UPFC; voltage security;
D O I
10.1109/TPWRS.2002.800916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
New York Power Authority is installing a new flexible ac transmission system (FACTS) controller, known as the convertible static compensator (CSC), at Marcy 345 kV substation. Two 100 MVA converters are installed. Through one 200 MVA shunt and two 100 MVA series transformers, the converters may be connected to each other and to the system in 11 different configurations. This arrangement of the converters allows STATCOM, SSSC, UPFC, or IPFC deployment at the bus and two of the lines exiting the substation, namely, Marcy-Coopers Corners and Marcy-New Scotland 345 kV lines. Voltage, small signal, and transient stability simulations are conducted using the developed models of these configurations within the user-defined capability of the EPRI's power system analysis package. The focus of the studies is on finding out which configuration of the CSC provides the highest performance improvement from all stability points of view. Modulation controls are designed to improve inter-area oscillation damping. In general, all CSC configurations improve voltage, small signal, and transient stability margins of the system. The performance of the individual devices resulting from CSC configurations and their capabilities in the studied cases is presented. It is shown that the CSC in conjunction with three fixed capacitor banks at three other substations can increase the system power transfer limit by up to 310MW.
引用
收藏
页码:701 / 706
页数:6
相关论文
共 18 条
[1]   A versatile facts device model for powerflow and stability simulations [J].
Arabi, S ;
Kundur, P .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (04) :1944-1950
[2]   Innovative techniques in modeling UPFC for power system analysis [J].
Arabi, S ;
Kundur, P ;
Adapa, R .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (01) :336-341
[3]   SMALL-SIGNAL STABILITY PROGRAM ANALYSIS OF SVC AND HVDC IN AC POWER-SYSTEMS [J].
ARABI, S ;
ROGERS, GJ ;
WONG, DY ;
KUNDUR, P ;
LAUBY, MG .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1991, 6 (03) :1147-1153
[4]  
ARABI S, 2000, P IEEE PES 2000 SUMM
[5]  
ARABI S, 1997, P EPRI C FUT POW DEL
[6]  
ARABI S, 1998, TR109806
[7]   A study of equipment sizes and constraints for a unified power flow controller [J].
Bian, J ;
Ramey, DG ;
Nelson, RJ ;
Edris, A .
IEEE TRANSACTIONS ON POWER DELIVERY, 1997, 12 (03) :1385-1391
[8]   Controlling the flow of real and reactive power [J].
Edris, A ;
Mehraban, AS ;
Rahman, M ;
Gyugyi, L ;
Arabi, S ;
Reitman, T .
IEEE COMPUTER APPLICATIONS IN POWER, 1998, 11 (01) :20-25
[9]  
FARDANESH B, 1998, CIGRE AUG
[10]  
FARDANESH B, 2002, CIGRE AUG