Reactive oxygen species and regulation of gene expression

被引:221
作者
Turpaev, KT [1 ]
机构
[1] Russian Acad Sci, VA Engelhardt Mol Biol Inst, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
reactive oxygen species; nitric oxide; protein kinases; gene regulation;
D O I
10.1023/A:1014819832003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In eucaryotic cells reactive oxygen species (ROS) are produced in the reactions catalyzed by NAD(P)H oxidase and by some other specialized oxidases and also as an inevitable by-product of many redox reactions. Intracellular ROS synthesis is regulated by various hormones, cytokines, and growth factors. An increase in the ROS levels above a certain threshold (so-called oxidative stress) is accompanied by processes that are harmful for cell survival, such as lipid peroxidation and oxidative modification of proteins and nucleic acids. However, at low concentrations ROS act as secondary messengers responsible for a signal transduction from extracellular signaling molecules and their membrane receptors to the intracellular regulatory systems which control gene expression. Cellular transcriptional response to ROS is mediated mainly by activation of MAP protein kinases and submitted transcription factors AP-1, ATF, and NF-kappaB. A number of specific genes is also induced under hypoxia, i.e., under conditions opposite to oxidative stress. Cellular transcriptional response on hypoxia is mediated by activation of transcription factors HIF-1 and AP-1. Together with ROS, nitric oxide fulfills the role of a mobile and highly reactive redox-sensitive signaling molecule. Chemical reactions of NO with the superoxide anion and with other free radicals leads to production of highly reactive intermediates. Depending on the ratio of their intracellular concentrations, NO and ROS can either enhance or attenuate their reciprocal effects on cells.
引用
收藏
页码:281 / 292
页数:12
相关论文
共 121 条
[91]   Regulation of cytokine gene expression by reactive oxygen and reactive nitrogen intermediates [J].
Remick, DG ;
Villarete, L .
JOURNAL OF LEUKOCYTE BIOLOGY, 1996, 59 (04) :471-475
[92]  
Richard DE, 2000, J BIOL CHEM, V275, P26765
[93]   THE GENOMIC RESPONSE OF TUMOR-CELLS TO HYPOXIA AND REOXYGENATION - DIFFERENTIAL ACTIVATION OF TRANSCRIPTION FACTORS AP-1 AND NF-KAPPA-B [J].
RUPEC, RA ;
BAEUERLE, PA .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 234 (02) :632-640
[94]   Irreversible conversion of xanthine dehydrogenase into xanthine oxidase by a mitochondrial protease [J].
Saksela, M ;
Lapatto, R ;
Raivio, KO .
FEBS LETTERS, 1999, 443 (02) :117-120
[95]   HIF-1 and mechanisms of hypoxia sensing [J].
Semenza, GL .
CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (02) :167-171
[96]  
Severina IS, 1998, BIOCHEMISTRY-MOSCOW+, V63, P794
[97]   Oxidative stress and cell cycle checkpoint function [J].
Shackelford, RE ;
Kaufmann, WK ;
Paules, RS .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (09) :1387-1404
[98]   The chemistry of the S-nitrosoglutathione glutathione system [J].
Singh, SP ;
Wishnok, JS ;
Keshive, M ;
Deen, WM ;
Tannenbaum, SR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (25) :14428-14433
[99]   Mitochondria in the programmed death phenomena; A principle of biology: "It is better to die than to be wrong" [J].
Skulachev, VP .
IUBMB LIFE, 2000, 49 (05) :365-373
[100]  
SOHASINI M, 1988, MOL CELL BIOL, V18, P6983