Identification and characterization of the WRKY transcription factor family in Pinus monticola

被引:46
作者
Liu, Jun-Jun [1 ]
Ekramoddoullah, Abul K. M. [1 ]
机构
[1] Nat Resources Canada, Pacific Forestry Ctr, Canadian Forest Serv, Victoria, BC V8Z 1M5, Canada
关键词
genetic map; phylogenetic analysis; transcriptional factor; western white pine; WRKY protein; DNA-BINDING PROTEINS; WESTERN WHITE-PINE; PLANT DEFENSE; EXPRESSION PROFILES; CRONARTIUM-RIBICOLA; GENE SUPERFAMILY; MAJOR GENE; ARABIDOPSIS; RESISTANCE; PATHOGEN;
D O I
10.1139/G08-106
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The WRKY gene family represents an ancient and highly complex group of transcription factors involved in signal transduction pathways of numerous plant developmental processes and host defense response. Up to now, most WRKY proteins have been identified in a few angiosperm species. Identification of WRKY genes in a conifer species would facilitate a comprehensive understanding of the evolutionary and function-adaptive process of this superfamily in plants. We performed PCR on genomic DNA to clone WRKY sequences from western white pine (Pinus monticola), one of the most valuable conifer species endangered by white pine blister rust (Cronartium ribicola). In total, 83 P. monticola WRKY (PmWRKY) sequences were identified using degenerate primers targeted to the WRKY domain. A phylogenetic analysis revealed that PmWRKY members fell into four major groups (1, 2a+ 2b, 2c, and 2d+ 2e) described in Arabidopsis and rice. Because of high genetic diversity of the PmWRKY family, a modified AFLP method was used to detect DNA polymorphism of this gene family. Polymorphic fragments accounted for 17%-35% of total PCR products in the AFLP profiles. Among them, one WRKY AFLP marker was linked to the major resistance gene (Cr2) against C. ribicola. The results of this study provide basic genomic information for a conifer WRKY gene family, which will pave the way for elucidating gene evolutionary mechanisms in plants and unveiling the precise roles of PmWRKY in conifer development and defense response.
引用
收藏
页码:77 / 88
页数:12
相关论文
共 42 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Isolation, characterization, and development of WRKY genes as useful genetic markers in Theobroma cacao [J].
Borrone, JW ;
Kuhn, DN ;
Schnell, RJ .
THEORETICAL AND APPLIED GENETICS, 2004, 109 (03) :495-507
[3]   Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor [J].
Chen, CH ;
Chen, ZX .
PLANT PHYSIOLOGY, 2002, 129 (02) :706-716
[4]   Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis [J].
Cheong, YH ;
Chang, HS ;
Gupta, R ;
Wang, X ;
Zhu, T ;
Luan, S .
PLANT PHYSIOLOGY, 2002, 129 (02) :661-677
[5]   Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus [J].
Deslandes, L ;
Olivier, J ;
Peeters, N ;
Feng, DX ;
Khounlotham, M ;
Boucher, C ;
Somssich, I ;
Genin, S ;
Marco, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (13) :8024-8029
[6]   WRKY75 transcription factor is a modulator of phosphate acquisition and root development in arabidopsis [J].
Devaiah, Ballachanda N. ;
Karthikeyan, Athikkattuvalasu S. ;
Raghothama, Kashchandra G. .
PLANT PHYSIOLOGY, 2007, 143 (04) :1789-1801
[7]   Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response [J].
Dong, JX ;
Chen, CH ;
Chen, ZX .
PLANT MOLECULAR BIOLOGY, 2003, 51 (01) :21-37
[8]   Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis [J].
Du, LQ ;
Chen, ZX .
PLANT JOURNAL, 2000, 24 (06) :837-847
[9]   Cloning and characterization of a putative antifungal peptide gene (Pm-AMP1) in Pinus monticola [J].
Ekramoddoullah, AKM ;
Liu, JJ ;
Zamani, A .
PHYTOPATHOLOGY, 2006, 96 (02) :164-170
[10]   Regulation of the Arabidopsis defense transcriptome [J].
Eulgem, T .
TRENDS IN PLANT SCIENCE, 2005, 10 (02) :71-78