Biological therapies in the acute respiratory distress syndrome

被引:28
作者
Boyle, Andrew James [1 ,2 ]
McNamee, James Joseph [2 ]
McAuley, Daniel Francis [1 ,2 ]
机构
[1] Queens Univ Belfast, Ctr Infect & Immun, Belfast, Antrim, North Ireland
[2] Royal Victoria Hosp, Reg Intens Care Unit, Belfast BT12 6BA, Antrim, North Ireland
关键词
acute hypoxaemic respiratory failure; acute lung injury; acute respiratory distress syndrome; biological therapies; ACUTE LUNG INJURY; MESENCHYMAL STEM-CELLS; TUMOR-NECROSIS-FACTOR; ENDOTHELIAL GROWTH-FACTOR; ANGIOTENSIN-CONVERTING ENZYME-2; COLONY-STIMULATING FACTOR; PLACEBO-CONTROLLED TRIAL; CYCLIC-AMP FORMATION; ACTIVATED PROTEIN-C; FACTOR-ALPHA;
D O I
10.1517/14712598.2014.905536
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Introduction: The acute respiratory distress syndrome (ARDS) is characterised by life-threatening respiratory failure requiring mechanical ventilation, and multiple organ failure. It has a mortality of up to 30 - 45% and causes a long-term reduction in quality of life for survivors, with only approximately 50% of survivors able to return to work 12 months after hospital discharge. Areas covered: In this review we discuss the complex pathophysiology of ARDS, describe the mechanistic pathways implicated in the development of ARDS and how these are currently being targeted with novel biological therapies. These include therapies targeted against inflammatory cytokines, mechanisms mediating increased alveolar permeability and disordered coagulation, as well as the potential of growth factors, gene therapy and mesenchymal stem cells. Expert opinion: Although understanding of the pathophysiology of ARDS has improved, to date there are no effective pharmacological interventions that target a specific mechanism, with the only potentially effective therapies to date aiming to limit ventilator-associated lung injury. However, we believe that through this improved mechanistic insight and better clinical trial design, there is cautious optimism for the future of biological therapies in ARDS, and expect current and future biological compounds to provide treatment options to clinicians managing this devastating condition.
引用
收藏
页码:969 / 981
页数:13
相关论文
共 120 条
[31]   Evolution of mechanical ventilation in response to clinical research [J].
Esteban, Andres ;
Ferguson, Niall D. ;
Meade, Maureen O. ;
Frutos-Vivar, Fernando ;
Apezteguia, Carlos ;
Brochard, Laurent ;
Raymondos, Konstantinos ;
Nin, Nicolas ;
Hurtado, Javier ;
Tomicic, Vinko ;
Gonzalez, Marco ;
Elizalde, Jose ;
Nightingale, Peter ;
Abroug, Fekri ;
Pelosi, Paolo ;
Arabi, Yaseen ;
Moreno, Rui ;
Jibaja, Manuel ;
D'Empaire, Gabriel ;
Sandi, Fredi ;
Matamis, Dimitros ;
Montanez, Ana Maria ;
Anzueto, Antonio .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2008, 177 (02) :170-177
[32]   IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger [J].
Ferretti, S ;
Bonneau, O ;
Dubois, GR ;
Jones, CE ;
Trifilieff, A .
JOURNAL OF IMMUNOLOGY, 2003, 170 (04) :2106-2112
[33]   Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models [J].
Finch, Paul W. ;
Cross, Lawrence J. Mark ;
McAuley, Daniel F. ;
Farrell, Catherine L. .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2013, 17 (09) :1065-1087
[34]   Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced lung injury [J].
Frank, James A. ;
Wray, Charlie M. ;
McAuley, Danny F. ;
Schwendener, Reto ;
Matthay, Michael A. .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2006, 291 (06) :L1191-L1198
[35]   Anti-interleukin-8 autoantibody:interieukin-8 immune complexes in acute lung injury/acute respiratory distress syndrome [J].
Fudala, Rafal ;
Krupa, Agnieszka ;
Stankowska, Dorota ;
Allen, Timothy C. ;
Kurdowska, Anna K. .
CLINICAL SCIENCE, 2008, 114 (5-6) :403-412
[36]   Anti-IL-8 autoantibody: IL-8 immune complexes suppress spontaneous apoptosis of neutrophils [J].
Fudala, Rafal ;
Krupa, Agnieszka ;
Matthay, Michael A. ;
Allen, Timothy C. ;
Kurdowska, Anna K. .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2007, 293 (02) :L364-L374
[37]   NLRP3 deletion protects from hyperoxia-induced acute lung injury [J].
Fukumoto, Jutaro ;
Fukumoto, Itsuko ;
Parthasarathy, Prasanna Tamarapu ;
Cox, Ruan ;
Huynh, Bao ;
Ramanathan, Gurukumar Kollongod ;
Venugopal, Rajan Babu ;
Allen-Gipson, Diane S. ;
Lockey, Richard F. ;
Kolliputi, Narasaiah .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2013, 305 (02) :C182-C189
[38]   Interleukin-1β causes acute lung injury via αvβ5 and αvβ6 integrin-dependent mechanisms [J].
Ganter, Michael T. ;
Roux, Jeremie ;
Miyazawa, Byron ;
Howard, Marybeth ;
Frank, James A. ;
Su, George ;
Sheppard, Dean ;
Violette, Shelia M. ;
Weinreb, Paul H. ;
Horan, Gerald S. ;
Matthay, Michael A. ;
Pittet, Jean-Francois .
CIRCULATION RESEARCH, 2008, 102 (07) :804-812
[39]   Recent advances in genetic predisposition to clinical acute lung injury [J].
Gao, Li ;
Barnes, Kathleen C. .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2009, 296 (05) :L713-L725
[40]   Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications [J].
Ghannam, Soufiane ;
Bouffi, Carine ;
Djouad, Farida ;
Jorgensen, Christian ;
Noel, Daniele .
STEM CELL RESEARCH & THERAPY, 2010, 1