Numerical resolution of well-balanced shallow water equations with complex source terms

被引:464
作者
Liang, Qiuhua [1 ]
Marche, Fabien [2 ]
机构
[1] Univ Newcastle, Sch Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Univ Montpellier 2, F-34090 Montpellier, France
基金
英国工程与自然科学研究理事会;
关键词
Shallow water equations; Well-balanced scheme; Wetting and drying; Source terms; Riemann solver; Bed friction; FINITE-VOLUME METHOD; HYPERBOLIC CONSERVATION-LAWS; SAINT-VENANT SYSTEM; GODUNOV-TYPE SCHEME; DAM-BREAK; UNSTRUCTURED MESHES; BED TOPOGRAPHY; FLUX GRADIENTS; UPWIND SCHEMES; FLOWS;
D O I
10.1016/j.advwatres.2009.02.010
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
This paper presents a well-balanced numerical scheme for simulating frictional shallow flows over complex domains involving wetting and drying. The proposed scheme solves, in a finite volume Godunov-type framework, a set of pre-balanced shallow water equations derived by considering pressure balancing. Non-negative reconstruction of Riemann states and compatible discretization of slope source term produce stable and well-balanced solutions to shallow flow hydrodynamics over complex topography. The friction source term is discretized using a splitting implicit scheme. Limiting value of the friction force is derived to ensure stability. This new numerical scheme is validated against four theoretical benchmark tests and then applied to reproduce a laboratory dam break over a domain with irregular bed profile. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:873 / 884
页数:12
相关论文
共 45 条
[21]   ON UPSTREAM DIFFERENCING AND GODUNOV-TYPE SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
LAX, PD ;
VAN LEER, B .
SIAM REVIEW, 1983, 25 (01) :35-61
[22]   A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries [J].
Heniche, M ;
Secretan, Y ;
Boudreau, P ;
Leclerc, M .
ADVANCES IN WATER RESOURCES, 2000, 23 (04) :359-372
[23]  
Hirsch C., 1990, COMPUTATIONAL METHOD, V2
[24]   Numerical simulation of wave overtopping of coastal structures using the non-linear shallow water equations [J].
Hu, K ;
Mingham, CG ;
Causon, DM .
COASTAL ENGINEERING, 2000, 41 (04) :433-465
[25]   Flux difference splitting and the balancing of source terms and flux gradients [J].
Hubbard, ME ;
Garcia-Navarro, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 165 (01) :89-125
[26]   Central-upwind schemes for the Saint-Venant system [J].
Kurganov, A ;
Levy, D .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (03) :397-425
[27]   Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm [J].
LeVeque, RJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (01) :346-365
[28]   Simulation of dam- and dyke-break hydrodynamics on dynamically adaptive quadtree grids [J].
Liang, Q ;
Borthwick, AGL ;
Stelling, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 46 (02) :127-162
[29]   Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography [J].
Liang, Qiuhua ;
Borthwick, Alistair G. L. .
COMPUTERS & FLUIDS, 2009, 38 (02) :221-234
[30]   Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes [J].
Marche, F. ;
Bonneton, P. ;
Fabrie, P. ;
Seguin, N. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 53 (05) :867-894