The Circadian System in Higher Plants

被引:517
作者
Harmer, Stacey L. [1 ]
机构
[1] Univ Calif Davis, Coll Biol Sci, Dept Plant Biol, Davis, CA 95616 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
transcriptional feedback; clock; network; signaling; rhythms; PSEUDO-RESPONSE REGULATORS; ARABIDOPSIS BIOLOGICAL CLOCK; NATURAL ALLELIC VARIATION; PLAY ESSENTIAL ROLES; GENE-EXPRESSION; FLOWERING TIME; TEMPERATURE-COMPENSATION; CONSTITUTIVE EXPRESSION; INDIVIDUAL FIBROBLASTS; TRANSCRIPTION FACTORS;
D O I
10.1146/annurev.arplant.043008.092054
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The circadian clock regulates diverse aspects of plant growth and development and promotes plant fitness. Molecular identification of clock components, primarily in Arabidopsis, has led to recent rapid progress in our understanding of the clock mechanism in higher plants. Using mathematical modeling and experimental approaches, workers in the field have developed a model of the clock that incorporates both transcriptional and posttranscriptional regulation of clock genes. This cell-autonomous clock, or oscillator, generates rhythmic outputs that can be monitored at the cellular and whole-organism level. The clock not only confers daily rhythms in growth and metabolism, but also interacts with signaling pathways involved in plant responses to the environment. Future work will lead to a better understanding of how the clock and other signaling networks are integrated to provide plants with an adaptive advantage.
引用
收藏
页码:357 / 377
页数:21
相关论文
共 150 条
[1]   Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J].
Alabadí, D ;
Oyama, T ;
Yanovsky, MJ ;
Harmon, FG ;
Más, P ;
Kay, SA .
SCIENCE, 2001, 293 (5531) :880-883
[3]   Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in arabidopsis [J].
Bancos, S ;
Szatmari, AM ;
Castle, J ;
Kozma-Bognar, L ;
Shibata, K ;
Yokota, T ;
Bishop, GJ ;
Nagy, F ;
Szekeres, M .
PLANT PHYSIOLOGY, 2006, 141 (01) :299-309
[4]   Circadian rhythms from multiple oscillators: Lessons from diverse organisms [J].
Bell-Pedersen, D ;
Cassone, VM ;
Earnest, DJ ;
Golden, SS ;
Hardin, PE ;
Thomas, TL ;
Zoran, MJ .
NATURE REVIEWS GENETICS, 2005, 6 (07) :544-556
[5]   Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis [J].
Bläsing, OE ;
Gibon, Y ;
Günther, M ;
Höhne, M ;
Morcuende, R ;
Osuna, D ;
Thimm, O ;
Usadel, B ;
Scheible, WR ;
Stitt, M .
PLANT CELL, 2005, 17 (12) :3257-3281
[6]   Independent control of gibberellin biosynthesis and flowering time by the circadian clock in Arabidopsis [J].
Blázquez, MA ;
Trénor, M ;
Weigel, D .
PLANT PHYSIOLOGY, 2002, 130 (04) :1770-1775
[7]   Conservation and divergence of circadian clock operation in a stress-inducible crassulacean acid metabolism species reveals clock compensation against stress [J].
Boxall, SF ;
Foster, JM ;
Bohnert, HJ ;
Cushman, JC ;
Nimmo, HG ;
Hartwell, J .
PLANT PHYSIOLOGY, 2005, 137 (03) :969-982
[8]   ELF3 modulates resetting of the circadian clock in Arabidopsis [J].
Covington, MF ;
Panda, S ;
Liu, XL ;
Strayer, CA ;
Wagner, DR ;
Kay, SA .
PLANT CELL, 2001, 13 (06) :1305-1315
[9]   The circadian clock regulates auxin signaling and responses in Arabidopsis [J].
Covington, Michael F. ;
Harmer, Stacey L. .
PLOS BIOLOGY, 2007, 5 (08) :1773-1784
[10]   Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development [J].
Covington, Michael F. ;
Maloof, Julin N. ;
Straume, Marty ;
Kay, Steve A. ;
Harmer, Stacey L. .
GENOME BIOLOGY, 2008, 9 (08)