Yang-Lee zeros for a nonequilibrium phase transition

被引:29
作者
Dammer, SM [1 ]
Dahmen, SR
Hinrichsen, H
机构
[1] Univ Duisburg Gesamthsch, Fak 4, D-47048 Duisburg, Germany
[2] Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil
[3] Berg Univ Gesamthsch Wuppertal, D-42097 Wuppertal, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 21期
关键词
D O I
10.1088/0305-4470/35/21/303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Equilibrium systems which exhibit a phase transition can be studied. by investigating the complex zeros of the partition function. This method, pioneered by Yang and Lee, has been widely used in equilibrium statistical physics. We show that an analogous treatment is possible for a non-equilibrium phase transition into an absorbing state. By investigating the complex zeros of the survival probability of directed percolation processes we demonstrate that the zeros provide information about universal properties. Moreover we identify certain nontrivial points where the survival probability for bond percolation can be computed exactly.
引用
收藏
页码:4527 / 4539
页数:13
相关论文
共 20 条
[1]   A new look at the 2D Ising model from exact partition function zeros for large lattice sizes [J].
Alves, NA ;
De Felicio, JRD ;
Hansmann, UHE .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (05) :1063-1071
[2]   Partition function zeros and leading-order scaling correction of the 3D Ising model from multicanonical simulations [J].
Alves, NA ;
de Felicio, JRD ;
Hansmann, UHE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (42) :7489-7498
[3]   Directed percolation, fractal roots and the Lee-Yang theorem [J].
Arndt, PF ;
Dahmen, SR ;
Hinrichsen, H .
PHYSICA A, 2001, 295 (1-2) :128-131
[4]   Yang-Lee theory for a nonequilibrium phase transition [J].
Arndt, PF .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :814-817
[5]  
De Almeida A. M. O., 1988, HAMILTONIAN SYSTEMS
[6]   Reweighting in nonequilibrium simulations [J].
Dickman, R .
PHYSICAL REVIEW E, 1999, 60 (03) :R2441-R2444
[7]  
Ghyka M., 1977, GEOMETRY ART LIFE
[8]  
GRIFFITHS RB, 1972, PHASE TRANSITIONS CR, V1
[9]   FINITE-LATTICE EXTRAPOLATION ALGORITHMS [J].
HENKEL, M ;
SCHUTZ, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (11) :2617-2633
[10]   Non-equilibrium critical phenomena and phase transitions into absorbing states [J].
Hinrichsen, H .
ADVANCES IN PHYSICS, 2000, 49 (07) :815-958