TIGHT FRAME CHARACTERIZATION OF MULTIWAVELET VECTOR FUNCTIONS IN TERMS OF THE POLYPHASE MATRIX

被引:13
作者
Krommweh, Jens [1 ]
机构
[1] Univ Duisburg Essen, Dept Math, D-47048 Duisburg, Germany
关键词
Tight frames; extension principles; polyphase representation; modulation matrix; directional wavelet frames; AFFINE SYSTEMS; L-2(R-D);
D O I
10.1142/S0219691309002751
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The extension principles play an important role in characterizing and constructing of wavelet frames. The common extension principles, the unitary extension principle (UEP) or the oblique extension principle (OEP), are based on the unitarity of the modulation matrix. In this paper, we state the UEP and OEP for refinable function vectors in the polyphase representation. Finally, we apply our results to directional wavelets on triangles which we have constructed in a previous work. We will show that the wavelet system generates a tight frame for L-2(R-2).
引用
收藏
页码:9 / 21
页数:13
相关论文
共 18 条
[1]   Frame-theoretic analysis of oversampled filter banks [J].
Bolcskei, H ;
Hlawatsch, F ;
Feichtinger, HG .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (12) :3256-3268
[2]  
Cabrelli CA, 2004, MEM AM MATH SOC, V170, P1
[3]   Compactly supported tight and sibling frames with maximum vanishing moments [J].
Chui, CK ;
He, WJ ;
Stöckler, J .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (03) :224-262
[4]   Oversampled filter banks [J].
Cvetkovic, Z ;
Vetterli, M .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (05) :1245-1255
[5]   Framelets: MRA-based constructions of wavelet frames [J].
Daubechies, I ;
Han, B ;
Ron, A ;
Shen, ZW .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2003, 14 (01) :1-46
[6]   MULTIRESOLUTION ANALYSIS, HAAR BASES, AND SELF-SIMILAR TILINGS OF RN [J].
GROCHENIG, K ;
MADYCH, WR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :556-568
[7]   Wavelets with composite dilations and their MRA properties [J].
Guo, KH ;
Labate, D ;
Lim, WQ ;
Weiss, G ;
Wilson, E .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (02) :202-236
[8]   Multiwavelet frames from refinable function vectors [J].
Han, B ;
Mo, Q .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) :211-245
[9]  
HAN B, 2008, INT J APPL MATH APPL, V1, P1
[10]   Multivariate matrix refinable functions with arbitrary matrix dilation [J].
Jiang, QT .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (06) :2407-2438