TIGHT FRAME CHARACTERIZATION OF MULTIWAVELET VECTOR FUNCTIONS IN TERMS OF THE POLYPHASE MATRIX

被引:13
作者
Krommweh, Jens [1 ]
机构
[1] Univ Duisburg Essen, Dept Math, D-47048 Duisburg, Germany
关键词
Tight frames; extension principles; polyphase representation; modulation matrix; directional wavelet frames; AFFINE SYSTEMS; L-2(R-D);
D O I
10.1142/S0219691309002751
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The extension principles play an important role in characterizing and constructing of wavelet frames. The common extension principles, the unitary extension principle (UEP) or the oblique extension principle (OEP), are based on the unitarity of the modulation matrix. In this paper, we state the UEP and OEP for refinable function vectors in the polyphase representation. Finally, we apply our results to directional wavelets on triangles which we have constructed in a previous work. We will show that the wavelet system generates a tight frame for L-2(R-2).
引用
收藏
页码:9 / 21
页数:13
相关论文
共 18 条
[11]  
Keinert F., 2004, Wavelets and Multiwavelets
[12]   Some simple Haar-type wavelets in higher dimensions [J].
Krishtal, Ilya A. ;
Robinson, Benjamin D. ;
Weiss, Guido L. ;
Wilson, Edward N. .
JOURNAL OF GEOMETRIC ANALYSIS, 2007, 17 (01) :87-96
[13]  
KROMMWEH J, 2007, DIRECTIONAL WAVELET
[14]  
LIM WQ, 2005, THESIS WASHINGTON U
[15]   Affine systems in L-2(R-d) .2. Dual systems [J].
Ron, A ;
Shen, ZW .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (05) :617-637
[16]   Affine systems in L-2(R-d): The analysis of the analysis operator [J].
Ron, A ;
Shen, ZW .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 148 (02) :408-447
[17]  
Strang Gilbert., 1998, WAVELETS FILTER BANK
[18]  
Vaidyanathan P.P., 1993, Multirate Systems and Filterbanks