Melanocyte-specific microphthalmia-associated transcription factor isoform activates its own gene promoter through physical interaction with lymphoid-enhancing factor 1

被引:85
作者
Saito, H
Yasumoto, K
Takeda, K
Takahashi, K
Fukuzaki, A
Orikasa, S
Shibahara, S [1 ]
机构
[1] Tohoku Univ, Sch Med, Dept Mol Biol & Appl Physiol, Aoba Ku, Sendai, Miyagi 9808575, Japan
[2] Tohoku Univ, Sch Med, Dept Urol, Aoba Ku, Sendai, Miyagi 9808575, Japan
关键词
D O I
10.1074/jbc.M203719200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Waardenburg syndrome type 2 (WS2) is associated with heterozygous mutations in the gene encoding microphthalmia-associated transcription factor (MITF) and characterized by deafness and hypopigmentation due to lack of melanocytes in the inner ear and skin. Melanocyte-specific MITF isoform (MITF-M) is essential for melanocyte differentiation and is transcriptionally induced by Wnt signaling that is mediated by beta-catenin and LEF-1. Here we show that MITF-M transactivates its own promoter (M promoter) by interacting with LEF-1, as judged by transient expression assays and in vitro protein-protein binding assays, whereas no transactivation of the M promoter was detected with MITF-M alone or with the combination of MITF-M and dominant-negative LEF1 that lacks the beta-catenin-binding domain. This synergy depends on the three LEF-1-binding sites that are clustered in the proximal M promoter. Importantly, MITF-M recruited on the M promoter could function as a non-DNA-binding cofactor for LEF-1. Thus, MITF-M may function as a self-regulator of its own expression to maintain a threshold level of MITF-M that is required for melanocyte development. We suggest that MITF-M haploinsufficiency may impair the dosage-sensitive role of MITF-M or the correct assembly of multiple transcription factors, involving MITF-M, on the M promoter, which could account for dominant inheritance of WS2.
引用
收藏
页码:28787 / 28794
页数:8
相关论文
共 55 条
[1]   Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium [J].
Amae, S ;
Fuse, N ;
Yasumoto, K ;
Sato, S ;
Yajima, I ;
Yamamoto, H ;
Udono, T ;
Durlu, YK ;
Tamai, M ;
Takahashi, K ;
Shibahara, S .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 247 (03) :710-715
[2]   A natural classification of the basic helix-loop-helix class of transcription factors [J].
Atchley, WR ;
Fitch, WM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :5172-5176
[3]   AN EXONIC MUTATION IN THE HUP2 PAIRED DOMAIN GENE CAUSES WAARDENBURG SYNDROME [J].
BALDWIN, CT ;
HOTH, CF ;
AMOS, JA ;
DASILVA, EO ;
MILUNSKY, A .
NATURE, 1992, 355 (6361) :637-638
[4]  
Barker N, 2000, ADV CANCER RES, V77, P1
[5]   Functional interaction of beta-catenin with the transcription factor LEF-1 [J].
Behrens, J ;
vonKries, JP ;
Kuhl, M ;
Bruhn, L ;
Wedlich, D ;
Grosschedl, R ;
Birchmeier, W .
NATURE, 1996, 382 (6592) :638-642
[6]   Interaction among SOX10 PAX3 and MITF, three genes altered in Waardenburg syndrome [J].
Bondurand, N ;
Pingault, V ;
Goerich, DE ;
Lemort, N ;
Sock, E ;
Le Caignec, C ;
Wegner, M ;
Goossens, M .
HUMAN MOLECULAR GENETICS, 2000, 9 (13) :1907-1917
[7]   Wnt signaling: a common theme in animal development [J].
Cadigan, KM ;
Nusse, R .
GENES & DEVELOPMENT, 1997, 11 (24) :3286-3305
[8]   Control of neural crest cell fate by the Wnt signalling pathway [J].
Dorsky, RI ;
Moon, RT ;
Raible, DW .
NATURE, 1998, 396 (6709) :370-373
[9]  
Dorsky RI, 2000, GENE DEV, V14, P158
[10]   Neural crest-directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development [J].
Dunn, KJ ;
Williams, BO ;
Li, Y ;
Pavan, WJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10050-10055