Synchronization of spatiotemporal nonlinear dynamical systems by an active control

被引:43
作者
Codreanu, S [1 ]
机构
[1] Univ Babes Bolyai, Dept Theoret Phys, R-3400 Cluj Napoca, Romania
关键词
D O I
10.1016/S0960-0779(02)00128-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The approach we present in this work examines the synchronization of unidirectionally coupled nonlinear partial differential equations (PDEs) by an active control. It is a generalization of the method used by us to synchronize chaotic systems, described by one- or two-dimensional maps. The considered pair of PDEs are Fisher-Kolmogorov's equations, the synchronization of which we studied both analytically and numerically. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:507 / 510
页数:4
相关论文
共 14 条
[1]   Synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 1997, 8 (01) :51-58
[2]   INVERSE SOLUTION FOR SOME TRAVELING-WAVE REACTION DIFFUSION-PROBLEMS [J].
BORZI, C ;
FRISCH, HL ;
GIANOTTI, R ;
PERCUS, JK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4823-4830
[3]   DIFFUSION IN NONLINEAR MULTIPLICATIVE MEDIA [J].
CANOSA, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (10) :1862-&
[4]   An indirect synchronization of chaotic trajectories [J].
Codreanu, S ;
Savici, A .
CHAOS SOLITONS & FRACTALS, 2001, 12 (05) :845-850
[5]  
CODREANU S, 2000, ROMANIAN REP PHYS, V52, P225
[6]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[7]  
Kolmogorov A., 1937, Bull. Moscow State Univ. Ser. A: Math. Mech, V1, P1
[8]   Nonlinear waves in reaction-diffusion systems: The effect of transport memory [J].
Manne, KK ;
Hurd, AJ ;
Kenkre, VM .
PHYSICAL REVIEW E, 2000, 61 (04) :4177-4184
[9]  
Mikhailov AS, 1994, FDN SYNERGETICS
[10]  
Murray J. D., 1993, MATH BIOL, DOI DOI 10.1007/978-3-662-08542-4