Solvation: How to obtain microscopic energies from partitioning and solvation experiments

被引:78
作者
Chan, HS
Dill, KA
机构
[1] Dept. of Pharmaceutical Chemistry, University of California, San Francisco
来源
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE | 1997年 / 26卷
关键词
hydrophobic effect; Flory-Huggins; partition coefficient; polymer; solvation parameter; transfer experiment;
D O I
10.1146/annurev.biophys.26.1.425
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oil-water partitioning, solubilities, and vapor pressure experiments on small-molecule compounds are often used as models to obtain energies for biomolecular modeling. For example, measured partition coefficients, K, are often inserted into the formula -RT In K to obtain quantities thought to represent microscopic contact interaction free energies. We review evidence here that this procedure does not always give microscopically meaningful free energies. Some partitioning processes, particularly involving polymeric solvents such as octanol or hexadecane, are governed not only by translational entropies and contact interactions, but also by free energies resulting from changes in the conformations of the polymer chains upon solute insertion. The Flory-Huggins theory is more suitable for these situations than is the classical approach. We discuss the physical bases for both approaches.
引用
收藏
页码:425 / 459
页数:35
相关论文
共 124 条