Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment

被引:107
作者
Clewell, HJ
Gentry, PR
Covington, TR
Gearhart, JM
机构
[1] ICF Consulting, KS Crump Grp Inc, Ruston, LA USA
[2] Procter & Gamble Co, Cincinnati, OH USA
关键词
dichloroacetic acid; dichlorovinylcysteine; metabolism; model; PBPK; pharmacokinetics; risk assessment; trichloroacetic acid; trichloroethanol; trichloroethylene;
D O I
10.1289/ehp.00108s2283
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A physiologically based pharmacokinetic (PBPK) model was developed that provides a comprehensive description of the kinetics of trichloroethylene (TCE) and its metabolites. trichloroethanol (TCOH), trichloroacetic acid (TCA), and dichloroacetic acid (DCA), in the mouse, rat, and human for both oral and inhalation exposure. The model includes descriptions of the three principal target tissues for cancer identified in animal bioassays: liver, lung, and kidney. Cancer dose metrics provided in the model include the area under the concentration curve (AUC) for TCA and DCA in the plasma, the peak concentration and AUC for chloral in the tracheobronchial region of the lung, and the production of a thioacetylating intermediate from dichlorovinylcysteine in the kidney. Additional dose metrics provided for noncancer risk assessment include the peak concentrations and AUCs for TCE and TCOH in the blood, as well as the total metabolism of TCE divided by the body weight. Sensitivity and uncertainty analyses were performed on the model to evaluate its suitability for use in a pharmacokinetic risk assessment for TCE. Model predictions of TCE. TCA, DCA, and TCOH concentrations in rodents and humans are in good agreement with a variety of experimental data, suggesting that the model should provide a useful basis for evaluating cross-species differences in pharmacokinetics for these chemicals. In the case of the lung and kidney target tissues, however, only limited data are available for establishing cross-species pharmacokinetics. As a result, PBPK model calculations of target tissue dose for lung and kidney should be used with caution.
引用
收藏
页码:283 / 305
页数:23
相关论文
共 180 条
[51]   ABSORPTION, ELIMINATION AND METABOLISM OF TRICHLOROETHYLENE - A QUANTITATIVE COMPARISON BETWEEN RATS AND MICE [J].
DEKANT, W ;
SCHULZ, A ;
METZLER, M ;
HENSCHLER, D .
XENOBIOTICA, 1986, 16 (02) :143-152
[52]   THIOACYLATING INTERMEDIATES AS METABOLITES OF S-(1,2-DICHLOROVINYL)-L-CYSTEINE AND S-(1,2,2-TRICHLOROVINYL)-L-CYSTEINE FORMED BY CYSTEINE CONJUGATE BETA-LYASE [J].
DEKANT, W ;
BERTHOLD, K ;
VAMVAKAS, S ;
HENSCHLER, D ;
ANDERS, MW .
CHEMICAL RESEARCH IN TOXICOLOGY, 1988, 1 (03) :175-178
[53]   IDENTIFICATION OF S-1,2-DICHLOROVINYL-N-ACETYL-CYSTEINE AS A URINARY METABOLITE OF TRICHLOROETHYLENE - A POSSIBLE EXPLANATION FOR ITS NEPHROCARCINOGENICITY IN MALE-RATS [J].
DEKANT, W ;
METZLER, M ;
HENSCHLER, D .
BIOCHEMICAL PHARMACOLOGY, 1986, 35 (15) :2455-2458
[54]   METABOLISM OF TRICHLOROETHENE - INVIVO AND INVITRO EVIDENCE FOR ACTIVATION BY GLUTATHIONE CONJUGATION [J].
DEKANT, W ;
KOOB, M ;
HENSCHLER, D .
CHEMICO-BIOLOGICAL INTERACTIONS, 1990, 73 (01) :89-101
[55]  
DROZ PO, 1989, BRIT J IND MED, V46, P547
[56]  
DROZ PO, 1989, BRIT J IND MED, V46, P447
[57]   PHYSIOLOGICAL PHARMACOKINETIC MODELS - SOME ASPECTS OF THEORY, PRACTICE AND POTENTIAL [J].
DSOUZA, RW ;
BOXENBAUM, H .
TOXICOLOGY AND INDUSTRIAL HEALTH, 1988, 4 (02) :151-171
[58]   MECHANISM OF S-(1,2-DICHLOROVINYL)GLUTATHIONE-INDUCED NEPHROTOXICITY [J].
ELFARRA, AA ;
JAKOBSON, I ;
ANDERS, MW .
BIOCHEMICAL PHARMACOLOGY, 1986, 35 (02) :283-288
[59]   METABOLIC-ACTIVATION AND DETOXICATION OF NEPHROTOXIC CYSTEINE AND HOMOCYSTEINE S-CONJUGATES [J].
ELFARRA, AA ;
LASH, LH ;
ANDERS, MW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (08) :2667-2671
[60]  
EVANS DC, 1990, J BIOPHARM SCI, V1, P353