Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus

被引:72
作者
Hildebrandt, U
Schmelzer, E
Bothe, H
机构
[1] Univ Cologne, Inst Bot, D-50923 Cologne, Germany
[2] Max Planck Inst Zuchtungsforsch, D-50829 Cologne, Germany
关键词
D O I
10.1034/j.1399-3054.2002.1150115.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
PCR amplifications using tomato DNA and degenerate oligonucleotide primers allowed identification of a new putative nitrate transporter, termed NRT2;3. Its sequence showed typical motifs of a high affinity nitrate transporter of the Major Facilitator Superfamily (MFS). The formation of its mRNA was positively controlled by nitrate, and negatively by ammonium, but not by glutamine. In situ hybridization experiments showed that this transporter was mainly expressed in rhizodermal cells. Results from expression studies with two other nitrate transporters, LeNRT1;1 and LeNRT2;1, were essentially in accord with data of the literature. In roots colonized by the arbuscular mycorrhizal fungus Glomus intraradices Sy167, transcript formation of NRT2;3 extended to the inner cortical cells where the fungal structures, arbuscules and vesicles, were concentrated. Northern analyses indicated that the expression of only NRT2;3 among the transporters assayed was higher in AMF colonized tomato roots than in non-colonized controls. AMF-colonization caused a significant expression of a nitrate reductase gene of G. intraradices. The results may mean that AMF-colonization positively affects nitrate uptake from soil and nitrate allocation to the plant partner, probably mediated preferentially by LeNRT2;3. In addition, part of the nitrate taken up is reduced by the fungal partner itself and may then be transferred, when in excess, as glutamine to the plant symbiotic partner.
引用
收藏
页码:125 / 136
页数:12
相关论文
共 43 条
[1]   Regulation of GmNRT2 expression and nitrate transport activity in roots of soybean (Glycine max) [J].
Ranamalie Amarasinghe B.H.R. ;
De Bruxelles G.L. ;
Braddon M. ;
Onyeocha I. ;
Forde B.G. ;
Udvardi M.K. .
Planta, 1998, 206 (1) :44-52
[2]   Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture [J].
Bago, B ;
Vierheilig, H ;
Piche, Y ;
AzconAguilar, C .
NEW PHYTOLOGIST, 1996, 133 (02) :273-280
[3]   Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas [J].
Burleigh, SH .
PLANT SCIENCE, 2001, 160 (05) :899-904
[4]   Molecular and physiological aspects of nitrate uptake in plants [J].
Crawford, NM ;
Glass, ADM .
TRENDS IN PLANT SCIENCE, 1998, 3 (10) :389-395
[5]   Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display [J].
Filleur, S ;
Daniel-Vedele, F .
PLANTA, 1999, 207 (03) :461-469
[6]   Nitrate transporters in plants: structure, function and regulation [J].
Forde, BG .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2000, 1465 (1-2) :219-235
[7]   ACQUISITION OF NITROGEN BY EXTERNAL HYPHAE OF ARBUSCULAR MYCORRHIZAL FUNGI ASSOCIATED WITH ZEA-MAYS L [J].
FREY, B ;
SCHUEPP, H .
NEW PHYTOLOGIST, 1993, 124 (02) :221-230
[8]   RAPID PRODUCTION OF FULL-LENGTH CDNAS FROM RARE TRANSCRIPTS - AMPLIFICATION USING A SINGLE GENE-SPECIFIC OLIGONUCLEOTIDE PRIMER [J].
FROHMAN, MA ;
DUSH, MK ;
MARTIN, GR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (23) :8998-9002
[9]   WATER AND NUTRIENT TRANSLOCATION BY HYPHAE OF GLOMUS-MOSSEAE [J].
GEORGE, E ;
HAUSSLER, KU ;
VETTERLEIN, D ;
GORGUS, E ;
MARSCHNER, H .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1992, 70 (11) :2130-2137