A priori error estimates for numerical methods for scalar conservation laws .1. The general approach

被引:35
作者
Cockburn, B [1 ]
Gremaud, PA [1 ]
机构
[1] N CAROLINA STATE UNIV,DEPT MATH,RALEIGH,NC 27695
关键词
A priori error estimates; monotone schemes; conservation laws;
D O I
10.1090/S0025-5718-96-00701-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a general theory of a priori error estimates for scalar conservation laws by suitably modifying the original Kuznetsov approximation theory. As a first application of this general technique, we show that error estimates for conservation laws can be obtained without having to use explicitly any regularity properties of the approximate solution. Thus, we obtain optimal error estimates for tile Engquist-Osher scheme without using the fact (i) that tile solution is uniformly bounded, (ii) that the scheme is total variation diminishing, and (iii) that tile discrete semigroup associated with the scheme has the L(1)-contraction property, which guarantees an upper bound for tile modulus of continuity in time of the approximate solution.
引用
收藏
页码:533 / 573
页数:41
相关论文
共 27 条
[21]  
PERTHAME B, 1988, SIAM J MATH ANAL, V19, P295, DOI 10.1137/0519022
[23]  
SZEPESSY A, 1989, MATH COMPUT, V53, P527, DOI 10.1090/S0025-5718-1989-0979941-6
[24]  
SZEPESSY A, 1991, RAIRO-MATH MODEL NUM, V25, P749
[25]   ON THE PIECEWISE SMOOTHNESS OF ENTROPY SOLUTIONS TO SCALAR CONSERVATION-LAWS [J].
TADMOR, E ;
TASSA, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (9-10) :1631-1652
[26]  
VILA JP, 1994, RAIRO-MATH MODEL NUM, V28, P267
[27]  
Vol'pert A. I., 1969, Math. USSR Sb, V7, P365, DOI [10.1070/sm1969v007n03abeh001095, 10.1070/sm1969v, DOI 10.1070/SM1969V]