Generalized M-estimation for the accelerated failure time model

被引:5
作者
Wang, Siyang [1 ]
Hu, Tao [2 ]
Xiang, Liming [3 ]
Cui, Hengjian [2 ]
机构
[1] Cent Univ Finance & Econ, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
关键词
accelerated failure time model; generalized M-estimator; influence function; Kaplan-Meier weights; right censoring; robustness; T-TYPE REGRESSION; CENSORED REGRESSION; QUANTILE REGRESSION; SURVIVAL ANALYSIS; CONVERGENCE; ASYMPTOTICS;
D O I
10.1080/02331888.2015.1032970
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The accelerated failure time (AFT) model is an important regression tool to study the association between failure time and covariates. In this paper, we propose a robust weighted generalized M (GM) estimation for the AFT model with right-censored data by appropriately using the Kaplan-Meier weights in the GM-type objective function to estimate the regression coefficients and scale parameter simultaneously. This estimation method is computationally simple and can be implemented with existing software. Asymptotic properties including the root-n consistency and asymptotic normality are established for the resulting estimator under suitable conditions. We further show that the method can be readily extended to handle a class of nonlinear AFT models. Simulation results demonstrate satisfactory finite sample performance of the proposed estimator. The practical utility of the method is illustrated by a real data example.
引用
收藏
页码:114 / 138
页数:25
相关论文
共 40 条
  • [1] On asymptotics of t-type regression estimation in multiple linear model
    Cui, HJ
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (04): : 628 - 639
  • [2] Gonzalez-Manteiga W., 1994, J. Nonparametric Stat, V4, P65, DOI DOI 10.1080/10485259408832601
  • [3] Hampel FR., 2011, ROBUST STAT APPROACH, V196
  • [4] Uniform convergence rates for kernel estimation with dependent data
    Hansen, Bruce E.
    [J]. ECONOMETRIC THEORY, 2008, 24 (03) : 726 - 748
  • [5] Breakdown points of t-type regression estimators
    He, XM
    Simpson, DG
    Wang, GY
    [J]. BIOMETRIKA, 2000, 87 (03) : 675 - 687
  • [6] Longitudinal data analysis using t-type regression
    He, XM
    Cui, HJ
    Simpson, DG
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 122 (1-2) : 253 - 269
  • [7] He XM, 1999, STAT MED, V18, P1993, DOI 10.1002/(SICI)1097-0258(19990815)18:15<1993::AID-SIM165>3.0.CO
  • [8] 2-H
  • [9] Quantile regression under random censoring
    Honoré, B
    Khan, S
    Powell, JL
    [J]. JOURNAL OF ECONOMETRICS, 2002, 109 (01) : 67 - 105
  • [10] Huang J, 2007, STAT SINICA, V17, P1533