MHC-NP: Predicting peptides naturally processed by the MHC

被引:41
作者
Giguere, Sebastien [1 ]
Drouin, Alexandre [1 ]
Lacoste, Alexandre [1 ]
Marchand, Mario [1 ]
Corbeil, Jacques [2 ]
Laviolette, Francois [1 ]
机构
[1] Univ Laval, Dept Comp Sci & Software Engn, Quebec City, PQ G1V 0A6, Canada
[2] Univ Laval, Dept Mol Med, Quebec City, PQ G1V 0A6, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Machine learning; Kernel; Immunology; Epitope; Vaccinology; MHC; KERNEL;
D O I
10.1016/j.jim.2013.10.003
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present MHC-NP, a tool for predicting peptides naturally processed by the MHC pathway. The method was part of the 2nd Machine Learning Competition in Immunology and yielded state-of-the-art accuracy for the prediction of peptides eluted from human HLA-A*02:01, HLA-B*07:02, HLA-B*35:01, HLA-B*44:03, HIA-B*53:01, HLA-B*57:01 and mouse H2-D-b and H2-K-b MHC molecules. We briefly explain the theory and motivations that have led to developing this tool. General applicability in the field of immunology and specifically epitope-based vaccine are expected. Our tool is freely available online and hosted by the Immune Epitope Database at http://tools.immuneepitope.org/mhcnp/. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 19 条
[1]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159
[2]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[3]  
Elkan C., 2008, PROC 14 ACM SIGKDD I, P213, DOI DOI 10.1145/1401890.1401920
[4]   Learning a peptide-protein binding affinity predictor with kernel ridge regression [J].
Giguere, Sebastien ;
Marchand, Mario ;
Laviolette, Francois ;
Drouin, Alexandre ;
Corbeil, Jacques .
BMC BIOINFORMATICS, 2013, 14
[5]  
Hastie T., 2009, ELEMENTS STAT LEARNI, DOI DOI 10.1007/978-0-387-84858-7
[6]  
Jiang J., 2008, A literature survey on domain adaptation of statistical classifiers
[7]  
Joachims T, 1999, MACHINE LEARNING, PROCEEDINGS, P200
[8]  
Leslie C., 2002, P PSB, V7, P566
[9]   NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11 [J].
Lundegaard, Claus ;
Lamberth, Kasper ;
Harndahl, Mikkel ;
Buus, Soren ;
Lund, Ole ;
Nielsen, Morten .
NUCLEIC ACIDS RESEARCH, 2008, 36 :W509-W512
[10]   Oligo kernels for datamining on biological sequences: a case study on prokaryotic translation initiation sites [J].
Meinicke, P ;
Tech, M ;
Morgenstern, B ;
Merkl, R .
BMC BIOINFORMATICS, 2004, 5 (1)