A time-reversible variable-stepsize integrator for constrained dynamics

被引:10
作者
Barth, E [1 ]
Leimkuhler, B
Reich, S
机构
[1] Kalamazoo Coll, Dept Math & Comp Sci, Kalamazoo, MI 49006 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] Univ Surrey, Dept Math & Stat, Guildford GU2 5XH, Surrey, England
关键词
symplectic methods; time-reversible methods; adaptive timestepping; variable-stepsize methods; nonlinear elastic dynamics; rod models; holonomically constrained Hamiltonian systems; Verlet; leapfrog; SHAKE discretization;
D O I
10.1137/S1064827596314194
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article considers the design and implementation of variable-timestep methods for simulating holonomically constrained mechanical systems. Symplectic variable stepsizes are briefly discussed, and we consider time-reparameterization techniques employing a time-reversible (symmetric) integration method to solve the equations of motion. We give several numerical examples, including a simulation of an elastic (inextensible, unshearable) rod undergoing large deformations and collisions with the sides of a bounding box. Numerical experiments indicate that adaptive stepping can significantly smooth the numerical energy and improve the overall efficiency of the simulation.
引用
收藏
页码:1027 / 1044
页数:18
相关论文
共 31 条
[2]  
Antman S. S., 2005, NONLINEAR PROBLEMS E
[3]   ALGORITHMS FOR CONSTRAINED MOLECULAR-DYNAMICS [J].
BARTH, E ;
KUCZERA, K ;
LEIMKUHLER, B ;
SKEEL, RD .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (10) :1192-1209
[4]  
BARTH E, 1996, COMPUTER SIMULATION, V3
[5]  
BARTH E, 1996, FIELDS I COMMUN, V10, P25
[6]  
BETTIS DG, 1972, GRAVITATIONAL N BODY, P388
[7]   ACCURATE LONG-TERM INTEGRATION OF DYNAMICAL-SYSTEMS [J].
CALVO, MP ;
HAIRER, E .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) :95-105
[8]  
CALVO MP, 1991, NUMEICAL ANAL, P34
[9]   Asymptotic error analysis of the Adaptive Verlet method [J].
Cirilli, S ;
Hairer, E ;
Leimkuhler, B .
BIT NUMERICAL MATHEMATICS, 1999, 39 (01) :25-33
[10]   An impetus-striction simulation of the dynamics of an elastica [J].
Dichmann, DJ ;
Maddocks, JH .
JOURNAL OF NONLINEAR SCIENCE, 1996, 6 (03) :271-292