Finite element approximation of diffusion equations with convolution terms

被引:16
作者
Peszynska, M
机构
[1] Systems Research Institute, Polish Academy of Sciences, 01-447 Warszawa
关键词
integro-partial differential equations; finite elements; convolution integrals;
D O I
10.1090/S0025-5718-96-00738-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Approximation of solutions to diffusion equations with memory represented by convolution integral terms is considered. Such problems arise from modeling of flows in fissured media. Convergence of the method is proved and results of numerical experiments confirming the theoretical results are presented. The advantages of implementation of the algorithm in a multiprocessing environment are discussed.
引用
收藏
页码:1019 / 1037
页数:19
相关论文
共 36 条
[1]  
[Anonymous], DIFFERENTIAL INTEGRA
[2]  
[Anonymous], J PARTIAL DIFF EQU
[3]   DERIVATION OF THE DOUBLE POROSITY MODEL OF SINGLE-PHASE FLOW VIA HOMOGENIZATION THEORY [J].
ARBOGAST, T ;
DOUGLAS, J ;
HORNUNG, U .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (04) :823-836
[5]  
ARBOGAST T, 1990, DYNAMICS FLUIDS HIER, P177
[6]   CONVERGENCE RATE ESTIMATE FOR A DOMAIN DECOMPOSITION METHOD [J].
CAI, XC ;
GROPP, WD ;
KEYES, DE .
NUMERISCHE MATHEMATIK, 1992, 61 (02) :153-169
[7]   ADDITIVE SCHWARZ ALGORITHMS FOR PARABOLIC CONVECTION-DIFFUSION EQUATIONS [J].
CAI, XC .
NUMERISCHE MATHEMATIK, 1991, 60 (01) :41-61
[8]   FINITE-ELEMENT APPROXIMATION OF A PARABOLIC INTEGRODIFFERENTIAL EQUATION WITH A WEAKLY SINGULAR KERNEL [J].
CHEN, C ;
THOMEE, V ;
WAHLBIN, LB .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :587-602
[9]  
Ciarlet PG., 1978, The Finite Element Method for Elliptic Problems
[10]  
DRYJA M, 1990, SOME DOMAIN DECOMPOS