Surface modification and characterization of chitosan film blended with poly-L-lysine

被引:61
作者
Cheng, MY [1 ]
Gong, K [1 ]
Li, JM [1 ]
Gong, YD [1 ]
Zhao, NM [1 ]
Zhang, XF [1 ]
机构
[1] Tsing Hua Univ, Dept Biol Sci & Biotechnol, State Key Lab Biomembrane & Membrane Biotechnol, Beijing 100084, Peoples R China
关键词
chitosan; poly-L-lysine; composite material; nerve cell affinity; nerve regeneration;
D O I
10.1177/0885328204043450
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Biodegradable nerve guidance conduits (NGCs) represent a promising alternative to current clinical nerve repair procedures. Chitosan, a natural polysaccharide that has excellent biocompatibility and biodegradability, can be used as a nerve conduit material. The purpose of this work was to study the nerve cell affinity of chitosan modified by blending with different content of poly-L-lysine. PC12 cells culture was used to evaluate the nerve cell affinity of the chitosan-poly-L-lysine composite materials. The results showed that composite materials had significantly improved nerve cell affinity compared to chitosan as indicated by increased attachment, differentiation, and growth of nerve cells. The improved nerve cell affinity might be due to both the increased surface charge and hydrophilicity of composite materials. Composite material with 3 wt% poly-L-lysine content (PL-3) is an even better material in nerve cell affinity than collagen, suggesting that poly-L-lysine-blended chitosan is a promising candidate material for nerve regeneration.
引用
收藏
页码:59 / 75
页数:17
相关论文
共 28 条
[1]  
[Anonymous], BIOCH COLLAGEN
[2]   SOLUTION PROPERTIES OF CHITOSANS - CONFORMATION AND CHAIN STIFFNESS OF CHITOSANS WITH DIFFERENT DEGREES OF N-ACETYLATION [J].
ANTHONSEN, MW ;
VARUM, KM ;
SMIDSROD, O .
CARBOHYDRATE POLYMERS, 1993, 22 (03) :193-201
[3]   A COLLAGEN-BASED NERVE GUIDE CONDUIT FOR PERIPHERAL-NERVE REPAIR - AN ELECTROPHYSIOLOGICAL STUDY OF NERVE REGENERATION IN RODENTS AND NONHUMAN-PRIMATES [J].
ARCHIBALD, SJ ;
KRARUP, C ;
SHEFNER, J ;
LI, ST ;
MADISON, RD .
JOURNAL OF COMPARATIVE NEUROLOGY, 1991, 306 (04) :685-696
[4]   SURFACE ISOELECTRIC POINT OF EVAPORATED SILVER FILMS - DETERMINATION BY CONTACT-ANGLE TITRATION [J].
CHAU, LK ;
PORTER, MD .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1991, 145 (01) :283-286
[5]   Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions [J].
Cheng, MY ;
Deng, JU ;
Yang, F ;
Gong, YD ;
Zhao, NM ;
Zhang, XF .
BIOMATERIALS, 2003, 24 (17) :2871-2880
[6]  
DELGADO VA, 2002, INTERFACIAL ELECTROK, P1
[7]   Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes: biological properties [J].
Denuziere, A ;
Ferrier, D ;
Damour, O ;
Domard, A .
BIOMATERIALS, 1998, 19 (14) :1275-1285
[8]   BIOACTIVE MATERIAL TEMPLATE FOR IN-VITRO SYNTHESIS OF BONE [J].
ELGHANNAM, A ;
DUCHEYNE, P ;
SHAPIRO, IM .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1995, 29 (03) :359-370
[9]  
Gong HP, 2000, J BIOMED MATER RES, V52, P285
[10]   ESTABLISHMENT OF A NORADRENERGIC CLONAL LINE OF RAT ADRENAL PHEOCHROMOCYTOMA CELLS WHICH RESPOND TO NERVE GROWTH-FACTOR [J].
GREENE, LA ;
TISCHLER, AS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (07) :2424-2428