The Rieske protein from Paracoccus denitrificans is inserted into the cytoplasmic membrane by the twin-arginine translocase

被引:50
作者
Bachmann, Julie
Bauer, Brigitte
Zwicker, Klaus
Ludwig, Bernd
Anderka, Oliver [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Biochem, D-60438 Frankfurt, Germany
[2] Univ Frankfurt Klinikum, Zentrum Biol Chem, Inst Mol Bioenerget, D-6000 Frankfurt, Germany
关键词
cytochrome bc(1) complex; membrane targeting; Paracoccus denitrificans; Rieske iron-sulfur protein; twin-arginine translocation;
D O I
10.1111/j.1742-4658.2006.05480.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Rieske [2Fe-2S] protein (ISP) is an essential subunit of cytochrome bc(1) complexes in mitochondrial and bacterial respiratory chains. Based on the presence of two consecutive arginines, it was argued that the ISP of Paracoccus denitrificans, a Gram-negative soil bacterium, is inserted into the cytoplasmic membrane via the twin-arginine translocation (Tat) pathway. Here, we provide experimental evidence that membrane integration of the bacterial ISP indeed relies on the Tat translocon. We show that targeting of the ISP depends on the twin-arginine motif. A strict requirement is established particularly for the second arginine residue (R16); conservative replacement of the first arginine (R15K) still permits substantial ISP transport. Comparative sequence analysis reveals characteristics common to Tat signal peptides in several bacterial ISPs; however, there are distinctive features relating to the fact that the presumed ISP Tat signal simultaneously serves as a membrane anchor. These differences include an elevated hydrophobicity of the h-region compared with generic Tat signals and the absence of an otherwise well-conserved '+5'-consensus motif lysine residue. Substitution of the +5 lysine (Y20K) compromises ISP export and/or cytochrome bc(1) stability to some extent and points to a specific role for this deviation from the canonical Tat motif. EPR spectroscopy confirms cytosolic insertion of the [2Fe-2S] cofactor. Mutation of an essential cofactor binding residue (C152S) decreases the ISP membrane levels, possibly indicating that cofactor insertion is a prerequisite for efficient translocation along the Tat pathway.
引用
收藏
页码:4817 / 4830
页数:14
相关论文
共 57 条
[1]   Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli [J].
Alami, M ;
Lüke, I ;
Deitermann, S ;
Eisner, G ;
Koch, HG ;
Brunner, J ;
Müller, M .
MOLECULAR CELL, 2003, 12 (04) :937-946
[2]  
ANDERKA O, 2005, THESIS J WOLFGANG GO
[3]   Molecular genetics of the genus Paracoccus:: Metabolically versatile bacteria with bioenergetic flexibility [J].
Baker, SC ;
Ferguson, SJ ;
Ludwig, B ;
Page, MD ;
Richter, OMH ;
van Spanning, RJM .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (04) :1046-+
[4]   Protein targeting by the bacterial twin-arginine translocation (Tat) pathway [J].
Berks, BC ;
Palmer, T ;
Sargent, F .
CURRENT OPINION IN MICROBIOLOGY, 2005, 8 (02) :174-181
[5]   The Tat protein export pathway [J].
Berks, BC ;
Sargent, F ;
Palmer, T .
MOLECULAR MICROBIOLOGY, 2000, 35 (02) :260-274
[6]   A common export pathway for proteins binding complex redox cofactors? [J].
Berks, BC .
MOLECULAR MICROBIOLOGY, 1996, 22 (03) :393-404
[7]   Pathway specificity for a Delta pH-dependent precursor thylakoid lumen protein is governed by a 'Sec-avoidance' motif in the transfer peptide and a 'Sec-incompatible' mature protein [J].
Bogsch, E ;
Brink, S ;
Robinson, C .
EMBO JOURNAL, 1997, 16 (13) :3851-3859
[8]  
BREYTON C, 1994, J BIOL CHEM, V269, P7597
[9]   A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif [J].
Buchanan, G ;
Sargent, F ;
Berks, BC ;
Palmer, T .
ARCHIVES OF MICROBIOLOGY, 2001, 177 (01) :107-112
[10]   A NEW-TYPE OF SIGNAL PEPTIDE - CENTRAL ROLE OF A TWIN-ARGININE MOTIF IN TRANSFER SIGNALS FOR THE DELTA-PH-DEPENDENT THYLAKOIDAL PROTEIN TRANSLOCASE [J].
CHADDOCK, AM ;
MANT, A ;
KARNAUCHOV, I ;
BRINK, S ;
HERRMANN, RG ;
KLOSGEN, RB ;
ROBINSON, C .
EMBO JOURNAL, 1995, 14 (12) :2715-2722