Hamilton-Jacobi equations and distance functions on Riemannian manifolds

被引:142
作者
Mantegazza, C [1 ]
Mennucci, AC [1 ]
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
geodesic; cut locus; Hamilton-Jacobi equation; viscosity solution; semiconcavity;
D O I
10.1007/s00245-002-0736-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with the properties of the distance function from a closed subset of a Riemannian manifold, with particular attention to the set of singularities.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 29 条
[1]   ON THE STRUCTURE OF SINGULAR SETS OF CONVEX-FUNCTIONS [J].
ALBERTI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :17-27
[2]   ON THE SINGULARITIES OF CONVEX-FUNCTIONS [J].
ALBERTI, G ;
AMBROSIO, L ;
CANNARSA, P .
MANUSCRIPTA MATHEMATICA, 1992, 76 (3-4) :421-435
[3]  
AMBROSIO L, 1989, B UNIONE MAT ITAL, V3B, P857
[4]   VARIATIONAL-PROBLEMS IN SBV AND IMAGE SEGMENTATION [J].
AMBROSIO, L .
ACTA APPLICANDAE MATHEMATICAE, 1989, 17 (01) :1-40
[5]   EXISTENCE THEORY FOR A NEW CLASS OF VARIATIONAL-PROBLEMS [J].
AMBROSIO, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (04) :291-322
[6]  
Ambrosio L., 1993, ANN SCUOLA NORM SU S, V20, P597
[7]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[8]  
BERGER M, 1987, Geometry I
[9]  
BESSE A, 1978, MANIFOLDS ALL WHOSE
[10]  
BUCHNER MA, 1978, COMPOS MATH, V37, P103