Decoherence of anyonic charge in interferometry measurements

被引:17
作者
Bonderson, Parsa [1 ]
Shtengel, Kirill
Slingerland, J. K.
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[3] Univ Calif Santa Barbara, Stn Q, Santa Barbara, CA 93106 USA
关键词
D O I
10.1103/PhysRevLett.98.070401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine interferometric measurements of the topological charge of (non-Abelian) anyons. The target's topological charge is measured from its effect on the interference of probe particles sent through the interferometer. We find that superpositions of distinct anyonic charges a and a(') in the target decohere (exponentially in the number of probes particles used) when the probes have nontrivial monodromy with the charges that may be fused with a to give a(').
引用
收藏
页数:4
相关论文
共 26 条
[1]   Detecting non-Abelian statistics in the ν=5/2 fractional quantum Hall state -: art. no. 016803 [J].
Bonderson, P ;
Kitaev, A ;
Shtengel, K .
PHYSICAL REVIEW LETTERS, 2006, 96 (01)
[2]  
BONDERSON P, IN PRESS
[3]   Probing non-Abelian statistics with quasiparticle interferometry [J].
Bonderson, Parsa ;
Shtengel, Kirill ;
Slingerland, J. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (01)
[4]   Aharonov-Bohm superperiod in a laughlin quasiparticle interferometer [J].
Camino, FE ;
Zhou, W ;
Goldman, VJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (24)
[5]   Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics [J].
Camino, FE ;
Zhou, W ;
Goldman, VJ .
PHYSICAL REVIEW B, 2005, 72 (07)
[6]   Two point-contact interferometer for quantum Hall systems [J].
Chamon, CDC ;
Freed, DE ;
Kivelson, SA ;
Sondhi, SL ;
Wen, XG .
PHYSICAL REVIEW B, 1997, 55 (04) :2331-2343
[7]   Topologically protected qubits from a possible non-Abelian fractional quantum Hall state [J].
Das Sarma, S ;
Freedman, M ;
Nayak, C .
PHYSICAL REVIEW LETTERS, 2005, 94 (16)
[8]  
FELDMAN DE, CONDMAT0607541
[9]   A Chern-Simons effective field theory for the Pfaffian quantum Hall state [J].
Fradkin, E ;
Nayak, C ;
Tsvelik, A ;
Wilczek, F .
NUCLEAR PHYSICS B, 1998, 516 (03) :704-718
[10]   A modular functor which is universal for quantum computation [J].
Freedman, MH ;
Larsen, M ;
Wang, ZH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 227 (03) :605-622