Identifying global synchronies in marine zooplankton populations: issues and opportunities

被引:74
作者
Perry, RI [1 ]
Batchelder, HP
Mackas, DL
Chiba, S
Durbin, E
Greve, W
Verheye, HM
机构
[1] Fisheries & Oceans Canada, Pacific Biol Stn, Nanaimo, BC V9T 6N7, Canada
[2] Marine & Coastal Management, ZA-8012 Cape Town, South Africa
[3] Forschungsinst Senckenberg, DE-22607 Hamburg, Germany
[4] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA
[5] Frontier Res Syst Global Change, Kanazawa Ku, Yokohama, Kanagawa, Japan
[6] Fisheries & Oceans Canada, Inst Ocean Sci, Sidney, BC V8L 4B2, Canada
[7] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA
关键词
biomass; climate; comparative approach; data access; global synchrony; methodology; phenology; predation; zooplankton;
D O I
10.1016/j.icesjms.2004.03.022
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Analyses of the influences of climate variability on local zooplankton populations and those within ocean basins are relatively recent (past 5-10 years). What is lacking are comparisons of zooplankton population variability among the world's oceans, in contrast to such global comparisons of fish populations. This article examines the key questions, capabilities, and impediments for global comparisons of zooplankton populations using long-term (> 10 year) data sets. The key question is whether global synchronies in zooplankton populations exist. If yes, then (i) to what extent are they driven by "bottom-up" (productivity) or "top-down" (predation) forcing; (ii) are they initiated by persistent forcing or by episodic events whose effects propagate through the system with different time-lags: and (iii) what proportion of the biological variance is caused directly by physical forcing and what proportion might be caused by non-linear instabilities in the biological dynamics (e.g. through trophodynamic links)? The capabilities are improving quickly that will enable global comparisons of zooplankton populations. Several long-term sampling programmes and data sets exist in many ocean basins, and the data are becoming more available. In addition, there has been a major philosophical change recently that now recognizes the value of continuing long-term zooplankton observation programmes. Understanding of life-history characteristics and the ecosystem roles of zooplankton are also improving. A first and critical step in exploring possible synchrony among zooplankton from geographically diverse regions is to recognize the limitations of the various data sets. There exist several impediments that must be surmounted before global comparisons of zooplankton populations can be realized. Methodological issues concerned with the diverse spatial and temporal scales of "monitored" planktonic populations are one example. Other problems include data access issues, structural constraints regarding funding of international comparisons, and lack of understanding by decision-makers of the value of zooplankton as indicators of ecosystem change. We provide recommendations for alleviating some of these impediments, and suggest a need for an easily understood example of global synchrony in zooplankton populations and the relation of those signals to large-scale climate drivers. (C) 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:445 / 456
页数:12
相关论文
共 87 条
[41]   Vertical distribution, population structure and life cycle of Neocalanus cristatus (Crustacea : Copepoda) in the Oyashio region, with notes on its regional variations [J].
Kobari, T ;
Ikeda, T .
MARINE BIOLOGY, 1999, 134 (04) :683-696
[42]  
KOBARI T, 2001, PICES SCI REPORT, V18, P114
[43]  
KOLLMER WE, 1963, ADM S W AFRICA MARIN, V8, P1
[44]   Time series analysis of interrupted long-term data set (1961-1991) of zooplankton abundance in Gulf of Maine (northern Atlantic, USA) [J].
Licandro, P ;
Conversi, A ;
Ibanez, F ;
Jossi, J .
OCEANOLOGICA ACTA, 2001, 24 (05) :453-466
[45]   Changes of zooplankton communities in the Gulf of Tigullio (Ligurian Sea, Western Mediterranean) from 1985 to 1995. Influence of hydroclimatic factors [J].
Licandro, P ;
Ibanez, F .
JOURNAL OF PLANKTON RESEARCH, 2000, 22 (12) :2225-2253
[46]   Interdecadal variation in developmental timing of Neocalanus plumchrus populations at Ocean Station P in the subarctic North Pacific [J].
Mackas, DL ;
Goldblatt, R ;
Lewis, AG .
CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 1998, 55 (08) :1878-1893
[47]   Changes in the zooplankton community of the British Columbia continental margin, 1985-1999, and their covariation with oceanographic conditions [J].
Mackas, DL ;
Thomson, RE ;
Galbraith, M .
CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2001, 58 (04) :685-702
[48]  
MACKAS DL, IN PRESS DEEP SEA RE
[49]  
Mantua NJ, 1997, B AM METEOROL SOC, V78, P1069, DOI 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO
[50]  
2