Inner and outer edge states in graphene rings: A numerical investigation

被引:90
作者
Bahamon, D. A. [1 ]
Pereira, A. L. C. [1 ]
Schulz, P. A. [1 ]
机构
[1] Univ Estadual Campinas, Inst Fis, BR-13083970 Campinas, Brazil
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 12期
基金
巴西圣保罗研究基金会;
关键词
electronic structure; energy gap; graphene; Landau levels; tight-binding calculations; QUANTUM DOTS; RIBBONS;
D O I
10.1103/PhysRevB.79.125414
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We numerically investigate quantum rings in graphene and find that their electronic properties may be strongly influenced by the geometry, the edge symmetries, and the structure of the corners. Energy spectra are calculated for different geometries (triangular, hexagonal, and rhombus-shaped graphene rings) and edge terminations (zigzag, armchair, as well as the disordered edge of a round geometry). The states localized at the inner edges of the graphene rings describe different evolution as a function of magnetic field when compared to those localized at the outer edges. We show that these different evolutions are the reason for the formation of subbands of edge-states energy levels, separated by gaps (anticrossings). It is evident from mapping the charge densities that the anticrossings occur due to the coupling between inner and outer edge states.
引用
收藏
页数:7
相关论文
共 21 条
[1]   Interplay between valley polarization and electron-electron interaction in a graphene ring [J].
Abergel, D. S. L. ;
Apalkov, Vadim M. ;
Chakraborty, Tapash .
PHYSICAL REVIEW B, 2008, 78 (19)
[2]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Charge Transport in Disordered Graphene-Based Low Dimensional Materials [J].
Cresti, Alessandro ;
Nemec, Norbert ;
Biel, Blanca ;
Niebler, Gabriel ;
Triozon, Francois ;
Cuniberti, Gianaurelio ;
Roche, Stephan .
NANO RESEARCH, 2008, 1 (05) :361-394
[5]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[6]   Electronic structure of triangular, hexagonal and round graphene flakes near the Fermi level [J].
Heiskanen, H. P. ;
Manninen, M. ;
Akola, J. .
NEW JOURNAL OF PHYSICS, 2008, 10
[7]   Edge state in graphene ribbons: Nanometer size effect and edge shape dependence [J].
Nakada, K ;
Fujita, M ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 1996, 54 (24) :17954-17961
[8]   Room-temperature quantum hall effect in graphene [J].
Novoselov, K. S. ;
Jiang, Z. ;
Zhang, Y. ;
Morozov, S. V. ;
Stormer, H. L. ;
Zeitler, U. ;
Maan, J. C. ;
Boebinger, G. S. ;
Kim, P. ;
Geim, A. K. .
SCIENCE, 2007, 315 (5817) :1379-1379
[9]   Optical properties of graphene antidot lattices [J].
Pedersen, Thomas G. ;
Flindt, Christian ;
Pedersen, Jesper ;
Jauho, Antti-Pekka ;
Mortensen, Niels Asger ;
Pedersen, Kjeld .
PHYSICAL REVIEW B, 2008, 77 (24)
[10]   Graphene antidot lattices: Designed defects and spin qubits [J].
Pedersen, Thomas G. ;
Flindt, Christian ;
Pedersen, Jesper ;
Mortensen, Niels Asger ;
Jauho, Antti-Pekka ;
Pedersen, Kjeld .
PHYSICAL REVIEW LETTERS, 2008, 100 (13)