Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013

被引:282
作者
Zhang, J. K. [1 ,2 ]
Sun, Y. [1 ]
Liu, Z. R. [1 ]
Ji, D. S. [1 ]
Hu, B. [1 ]
Liu, Q. [1 ]
Wang, Y. S. [1 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
RESOLVED CHEMICAL-CHARACTERIZATION; POSITIVE MATRIX FACTORIZATION; PEARL RIVER DELTA; ORGANIC AEROSOL; HIGH-RESOLUTION; MASS-SPECTROMETER; INORGANIC AEROSOLS; COAL COMBUSTION; PARTICLES; EMISSIONS;
D O I
10.5194/acp-14-2887-2014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In January 2013, Beijing experienced several serious haze events. To achieve a better understanding of the characteristics, sources and processes of aerosols during this month, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at an urban site between 1 January and 1 February 2013 to obtain the size-resolved chemical composition of non-refractory submicron particles (NR-PM1). During this period, the mean measured NR-PM1 mass concentration was 89.3 +/- 85.6 mu g m(-3), and it peaked at 423 mu g m(-3). Positive matrix factorization (PMF) differentiated the organic aerosol into five components, including a highly oxidized, low-volatility oxygenated organic aerosol (LV-OOA), a less oxidized, semi-volatile oxygenated OA (SV-OOA), a coal combustion OA (CCOA), a cooking-related OA (COA), and a hydrocarbon-like OA (HOA), which on average accounted for 28 %, 26 %, 15 %, 20% and 11% of the total organic mass, respectively. A detailed comparison between the polluted days and unpolluted days found many interesting results. First, the organic fraction was the most important NR-PM1 species during the unpolluted days (58 %), while inorganic species were dominant on polluted days (59 %). The OA composition also experienced a significant change; it was dominated by primary OA (POA), including COA, HOA and CCOA, on unpolluted days. The contribution of secondary OA (SOA) increased from 35% to 63% between unpolluted and polluted days. Second, meteorological effects played an important role in the heavy pollution in this month and differed significantly between the two types of days. The temperature and relative humidity (RH) were all increased on polluted days and the wind speed and air pressure were decreased. Third, the diurnal variation trend in NR-PM1 species and OA components showed some differences between the two types of days, and the OA was more highly oxidized on polluted days. Fourth, the effects of air masses were significantly different between the two types of days; air was mainly transported from contaminated areas on the polluted days. The comparison also found that the aerosol was more acidic on polluted days. Additionally, the variation trends of the mass concentration and mass fractions of NR-PM1 species and OA components were more dramatic when the NR-PM1 mass loading was at a higher level. The serious pollution observed in this month can be attributed to the synergy of unfavorable meteorological factors, the transport of air masses from high-pollution areas, emission by local sources, and other factors.
引用
收藏
页码:2887 / 2903
页数:17
相关论文
共 53 条
[1]   Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 1: Fine particle composition and organic source apportionment [J].
Aiken, A. C. ;
Salcedo, D. ;
Cubison, M. J. ;
Huffman, J. A. ;
DeCarlo, P. F. ;
Ulbrich, I. M. ;
Docherty, K. S. ;
Sueper, D. ;
Kimmel, J. R. ;
Worsnop, D. R. ;
Trimborn, A. ;
Northway, M. ;
Stone, E. A. ;
Schauer, J. J. ;
Volkamer, R. M. ;
Fortner, E. ;
de Foy, B. ;
Wang, J. ;
Laskin, A. ;
Shutthanandan, V. ;
Zheng, J. ;
Zhang, R. ;
Gaffney, J. ;
Marley, N. A. ;
Paredes-Miranda, G. ;
Arnott, W. P. ;
Molina, L. T. ;
Sosa, G. ;
Jimenez, J. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (17) :6633-6653
[2]   O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry [J].
Aiken, Allison C. ;
Decarlo, Peter F. ;
Kroll, Jesse H. ;
Worsnop, Douglas R. ;
Huffman, J. Alex ;
Docherty, Kenneth S. ;
Ulbrich, Ingrid M. ;
Mohr, Claudia ;
Kimmel, Joel R. ;
Sueper, Donna ;
Sun, Yele ;
Zhang, Qi ;
Trimborn, Achim ;
Northway, Megan ;
Ziemann, Paul J. ;
Canagaratna, Manjula R. ;
Onasch, Timothy B. ;
Alfarra, M. Rami ;
Prevot, Andre S. H. ;
Dommen, Josef ;
Duplissy, Jonathan ;
Metzger, Axel ;
Baltensperger, Urs ;
Jimenez, Jose L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (12) :4478-4485
[3]   Identification of the mass spectral signature of organic aerosols from wood burning emissions [J].
Alfarra, M. Rami ;
Prevot, Andre S. H. ;
Szidat, Sonke ;
Sandradewi, Jisca ;
Weimer, Silke ;
Lanz, Valentin A. ;
Schreiber, Daniel ;
Mohr, Martin ;
Baltensperger, Urs .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (16) :5770-5777
[4]   Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer [J].
Canagaratna, M. R. ;
Jayne, J. T. ;
Jimenez, J. L. ;
Allan, J. D. ;
Alfarra, M. R. ;
Zhang, Q. ;
Onasch, T. B. ;
Drewnick, F. ;
Coe, H. ;
Middlebrook, A. ;
Delia, A. ;
Williams, L. R. ;
Trimborn, A. M. ;
Northway, M. J. ;
DeCarlo, P. F. ;
Kolb, C. E. ;
Davidovits, P. ;
Worsnop, D. R. .
MASS SPECTROMETRY REVIEWS, 2007, 26 (02) :185-222
[5]   Real-time secondary aerosol formation during a fog event in London [J].
Dall'Osto, M. ;
Harrison, R. M. ;
Coe, H. ;
Williams, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (07) :2459-2469
[6]   Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO [J].
DeCarlo, P. F. ;
Ulbrich, I. M. ;
Crounse, J. ;
de Foy, B. ;
Dunlea, E. J. ;
Aiken, A. C. ;
Knapp, D. ;
Weinheimer, A. J. ;
Campos, T. ;
Wennberg, P. O. ;
Jimenez, J. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (12) :5257-5280
[7]   Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer [J].
DeCarlo, Peter F. ;
Kimmel, Joel R. ;
Trimborn, Achim ;
Northway, Megan J. ;
Jayne, John T. ;
Aiken, Allison C. ;
Gonin, Marc ;
Fuhrer, Katrin ;
Horvath, Thomas ;
Docherty, Kenneth S. ;
Worsnop, Doug R. ;
Jimenez, Jose L. .
ANALYTICAL CHEMISTRY, 2006, 78 (24) :8281-8289
[8]   Measurement of ambient aerosol composition during the PMTACS-NY 2001 using an aerosol mass spectrometer. Part I: Mass concentrations [J].
Drewnick, F ;
Schwab, JJ ;
Jayne, JT ;
Canagaratna, M ;
Worsnop, DR ;
Demerjian, KL .
AEROSOL SCIENCE AND TECHNOLOGY, 2004, 38 :92-103
[9]   A new time-of-flight aerosol mass spectrometer (TOF-AMS) - Instrument description and first field deployment [J].
Drewnick, F ;
Hings, SS ;
DeCarlo, P ;
Jayne, JT ;
Gonin, M ;
Fuhrer, K ;
Weimer, S ;
Jimenez, JL ;
Demerjian, KL ;
Borrmann, S ;
Worsnop, DR .
AEROSOL SCIENCE AND TECHNOLOGY, 2005, 39 (07) :637-658
[10]   Primary and secondary organic aerosols in Fresno, California during wintertime: Results from high resolution aerosol mass spectrometry [J].
Ge, Xinlei ;
Setyan, Ari ;
Sun, Yele ;
Zhang, Qi .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117