Detection of novel intracellular α-synuclein oligomeric species by fluorescence lifetime imaging

被引:69
作者
Klucken, Jochen
Outeiro, Tiago F.
Nguyen, Paul
McLean, Pamela J.
Hyman, Bradley T.
机构
[1] Massachusetts Gen Hosp, MassGen Inst Neurodegenerat Dis, Alzheimers Dis Res Unit, Charlestown, MA 02129 USA
[2] Univ Regensburg, Dept Neurol, D-8400 Regensburg, Germany
关键词
Parkinson's disease; Lewy body disease; chaperone; protein aggregation;
D O I
10.1096/fj.05-5422com
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oligomerization and aggregation of alpha-synuclein molecules are believed to play a major role in neuronal dysfunction and loss in Parkinson's disease (PD) and dementia with Lewy bodies. However, alpha-synuclein oligomerization and aggregation have been detected only indirectly in cells using detergent extraction methods. Here, we show for the first time intracellular alpha-synuclein oligomerization using fluorescence lifetime imaging (FLIM). Two forms of alpha-synuclein homomeric interactions were detected: an antiparallel amino terminus-carboxyl terminus interaction between alpha-synuclein molecules, and a close amino terminus-carboxy terminus interaction within single alpha-synuclein molecules. Coexpression of the chaperone protein Hsp70, which can block alpha-synuclein toxicity in several systems, causes alpha-synuclein to adopt a different, open conformation, but Hsp70 does not alter alpha-synuclein-alpha-synuclein interactions. Thus, the neuroprotective effect of Hsp70 can be explained by its chaperone activity on alpha-synuclein molecules, rather than alteration of alpha-synuclein-alpha-synuclein interactions.
引用
收藏
页码:2050 / 2057
页数:8
相关论文
共 47 条
[1]   Mechanisms of suppression of α-synuclein neurotoxicity by geldanamycin in Drosophila [J].
Auluck, PK ;
Meulener, MC ;
Bonini, NM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (04) :2873-2878
[2]   Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease [J].
Auluck, PK ;
Chan, HYE ;
Trojanowski, JQ ;
Lee, VMY ;
Bonini, NM .
SCIENCE, 2002, 295 (5556) :865-868
[3]   Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques [J].
Bacskai, BJ ;
Skoch, J ;
Hickey, GA ;
Allen, R ;
Hyman, BT .
JOURNAL OF BIOMEDICAL OPTICS, 2003, 8 (03) :368-375
[4]   Experimental models of Parkinson's disease [J].
Beal, MF .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (05) :325-332
[5]  
Berezovska O, 2003, J NEUROSCI, V23, P4560
[6]   Release of long-range tertiary interactions potentiates aggregation of natively unstructured α-synuclein [J].
Bertoncini, CW ;
Jung, YS ;
Fernandez, CO ;
Hoyer, W ;
Griesinger, C ;
Jovin, TM ;
Zweckstetter, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (05) :1430-1435
[7]   Familial mutants of α-synuclein with increased neurotoxicity have a destabilized conformation [J].
Bertoncini, CW ;
Fernandez, CO ;
Griesinger, C ;
Jovin, TM ;
Zweckstetter, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (35) :30649-30652
[8]   Helix periodicity, topology, and dynamics of membrane-associated α-Synuclein [J].
Bussell, R ;
Ramlall, TF ;
Eliezer, D .
PROTEIN SCIENCE, 2005, 14 (04) :862-872
[9]   α-synuclein cooperates with CSPα in preventing neurodegeneration [J].
Chandra, S ;
Gallardo, G ;
Fernández-Chacón, R ;
Schlüter, OM ;
Südhof, TC .
CELL, 2005, 123 (03) :383-396
[10]   Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid [J].
Conway, KA ;
Harper, JD ;
Lansbury, PT .
BIOCHEMISTRY, 2000, 39 (10) :2552-2563