The FAD-shielding residue Phe1395 regulates neuronal nitric-oxide synthase catalysis by controlling NADP+ affinity and a conformational equilibrium within the flavoprotein domain

被引:46
作者
Konas, DW
Zhu, K
Sharma, M
Aulak, KS
Brudvig, GW
Stuehr, DJ
机构
[1] Cleveland Clin Fdn, Dept Immunol, Lerner Res Inst, Cleveland, OH 44195 USA
[2] Yale Univ, Dept Chem, New Haven, CT 06520 USA
关键词
D O I
10.1074/jbc.M400872200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phe(1395) stacks parallel to the FAD isoalloxazine ring in neuronal nitric-oxide synthase (nNOS) and is representative of conserved aromatic amino acids found in structurally related flavoproteins. This laboratory previously showed that Phe(1395) was required to obtain the electron transfer properties and calmodulin (CaM) response normally observed in wild-type nNOS. Here we characterized the F1395S mutant of the nNOS flavoprotein domain (nNOSr) regarding its physical properties, NADP(+) binding characteristics, flavin reduction kinetics, steady-state and pre-steady-state cytochrome c reduction kinetics, and ability to shield its FMN cofactor in response to CaM or NADP(H) binding. F1395S nNOSr bound NADP(+) with 65% more of the nicotinamide ring in a productive conformation with FAD for hydride transfer and had an 8-fold slower rate of NADP(+) dissociation. CaM stimulated the rates of NADPH-dependent flavin reduction in wild-type nNOSr but not in the F1395S mutant, which had flavin reduction kinetics similar to those of CaM-free wild-type nNOSr. CaM-free F1395S nNOSr lacked repression of cytochrome c reductase activity that is typically observed in nNOSr. The combined results from pre-steady-state and EPR experiments revealed that this was associated with a lesser degree of FMN shielding in the NADP(+)-bound state as compared with wild type. We conclude that Phe(1395) regulates nNOSr catalysis in two ways. It facilitates NADP(+) release to prevent this step from being rate-limiting, and it enables NADP(H) to properly regulate a conformational equilibrium involving the FMN subdomain that controls reactivity of the FMN cofactor in electron transfer.
引用
收藏
页码:35412 / 35425
页数:14
相关论文
共 67 条
[1]   NITRIC-OXIDE SYNTHASES REVEAL A ROLE FOR CALMODULIN IN CONTROLLING ELECTRON-TRANSFER [J].
ABUSOUD, HM ;
STUEHR, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (22) :10769-10772
[2]  
ABUSOUD HM, 1994, J BIOL CHEM, V269, P32047
[3]   A conserved flavin-shielding residue regulates NO synthase electron transfer and nicotinamide coenzyme specificity [J].
Adak, S ;
Sharma, M ;
Meade, AL ;
Stuehr, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (21) :13516-13521
[4]   Neuronal nitric-oxide synthase mutant (Ser-1412 → Asp) demonstrates surprising connections between heme reduction, NO complex formation, and catalysis [J].
Adak, S ;
Santolini, J ;
Tikunova, S ;
Wang, Q ;
Johnson, JD ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (02) :1244-1252
[5]   Role of reductase domain cluster 1 acidic residues in neuronal nitric-oxide synthase - characterization of the FMN-free enzyme [J].
Adak, S ;
Ghosh, S ;
Abu-Soud, HM ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22313-22320
[6]   CLONED AND EXPRESSED NITRIC-OXIDE SYNTHASE STRUCTURALLY RESEMBLES CYTOCHROME-P-450 REDUCTASE [J].
BREDT, DS ;
HWANG, PM ;
GLATT, CE ;
LOWENSTEIN, C ;
REED, RR ;
SNYDER, SH .
NATURE, 1991, 351 (6329) :714-718
[7]   Endothelial nitric-oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide-dependent protein kinases [J].
Butt, E ;
Bernhardt, M ;
Smolenski, A ;
Kotsonis, P ;
Fröhlich, LG ;
Sickmann, A ;
Meyer, HE ;
Lohmann, SM ;
Schmidt, HHHW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (07) :5179-5187
[8]   A NEW SYNTHETIC APPROACH TO 5-DEAZAFLAVIN AND 5-DEAZA-10-THIAFLAVIN [J].
CHEN, X ;
TANAKA, K ;
YONEDA, F .
CHEMICAL & PHARMACEUTICAL BULLETIN, 1990, 38 (03) :612-615
[9]   AMP-activated protein kinase phosphorylation of endothelial NO synthase [J].
Chen, ZP ;
Mitchelhill, KI ;
Michell, BJ ;
Stapleton, D ;
Rodriguez-Crespo, I ;
Witters, LA ;
Power, DA ;
de Montellano, PRO ;
Kemp, BE .
FEBS LETTERS, 1999, 443 (03) :285-289
[10]   Calmodulin activates electron transfer through neuronal nitric-oxide synthase reductase domain by releasing an NADPH-dependent conformational lock [J].
Craig, DH ;
Chapman, SK ;
Daff, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (37) :33987-33994