Core-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography

被引:36
作者
Moon, Jun Hyuk
Yang, Shu
Dong, Wenting
Perry, Joseph W.
Adibi, Ali
Yang, Seung-Man
机构
[1] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[4] Korea Adv Inst Sci & Technol, Natl Creat Res Initiat Ctr Integrated Optofluid S, Taejon 305701, South Korea
[5] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea
来源
OPTICS EXPRESS | 2006年 / 14卷 / 13期
关键词
D O I
10.1364/OE.14.006297
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have fabricated diamond-like silicon photonic crystals through a sequential silica/silicon chemical vapor deposition (CVD) process from the corresponding polymer templates photopatterned by holographic lithography. Core-shell morphology is revealed due to the partial backfilling of the interstitial pores. To model the shell formation and investigate its effect to the bandgap properties, we developed a two-parameter level-set approach that closely approximated the core-shell morphology, and compare the bandgap simulation with the measured optical properties of the 3D crystals at each processing step. Both experimental and calculation results suggest that a complete filling is necessary to maximize the photonic bandgap in the diamond-like structures. (c) 2006 Optical Society of America.
引用
收藏
页码:6297 / 6302
页数:6
相关论文
共 26 条
[1]   Optical spectroscopy of opal matrices with CdS embedded in its pores: Quantum confinement and photonic band gap effects. [J].
Astratov, VN ;
Bogomolov, VN ;
Kaplyanskii, AA ;
Prokofiev, AV ;
Samoilovich, LA ;
Samoilovich, SM ;
Vlasov, YA .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1995, 17 (11-12) :1349-1354
[2]   Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres [J].
Blanco, A ;
Chomski, E ;
Grabtchak, S ;
Ibisate, M ;
John, S ;
Leonard, SW ;
Lopez, C ;
Meseguer, F ;
Miguez, H ;
Mondia, JP ;
Ozin, GA ;
Toader, O ;
van Driel, HM .
NATURE, 2000, 405 (6785) :437-440
[3]  
BLANCO A, 2006, IN PRESS ADV MAT
[4]   Photonic band gap formation in certain self-organizing systems [J].
Busch, K ;
John, S .
PHYSICAL REVIEW E, 1998, 58 (03) :3896-3908
[5]   Fabrication of photonic crystals for the visible spectrum by holographic lithography [J].
Campbell, M ;
Sharp, DN ;
Harrison, MT ;
Denning, RG ;
Turberfield, AJ .
NATURE, 2000, 404 (6773) :53-56
[6]   Electrically switchable mesoscale Penrose quasicrystal structure [J].
Gorkhali, SP ;
Qi, J ;
Crawford, GP .
APPLIED PHYSICS LETTERS, 2005, 86 (01) :011110-1
[7]   Direct-write assembly of three-dimensional photonic crystals:: Conversion of polymer scaffolds to silicon hollow-woodpile structures [J].
Gratson, GM ;
García-Santamaría, F ;
Lousse, V ;
Xu, MJ ;
Fan, SH ;
Lewis, JA ;
Braun, PV .
ADVANCED MATERIALS, 2006, 18 (04) :461-+
[8]   Microperiodic structures - Direct writing of three-dimensional webs [J].
Gratson, GM ;
Xu, MJ ;
Lewis, JA .
NATURE, 2004, 428 (6981) :386-386
[9]   A three-dimensional photonic crystal operating at infrared wavelengths [J].
Lin, SY ;
Fleming, JG ;
Hetherington, DL ;
Smith, BK ;
Biswas, R ;
Ho, KM ;
Sigalas, MM ;
Zubrzycki, W ;
Kurtz, SR ;
Bur, J .
NATURE, 1998, 394 (6690) :251-253
[10]   Photonic properties of bicontinuous cubic microphases [J].
Maldovan, M ;
Urbas, AM ;
Yufa, N ;
Carter, WC ;
Thomas, EL .
PHYSICAL REVIEW B, 2002, 65 (16) :1-5