Chromatin modifications by methylation and ubiquitination: Implications in the regulation of gene expression

被引:837
作者
Shilatifard, Ali [1 ]
机构
[1] St Louis Univ, Sch Med, St Louis, MO 63104 USA
[2] St Louis Univ, Ctr Canc, St Louis, MO 63104 USA
关键词
histone methylation; histone ubiquitination; epigenetic regulation; MLL; transcriptional elongation;
D O I
10.1146/annurev.biochem.75.103004.142422
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It is more evident now than ever that nucleosomes can transmit epigenetic information from one cell generation to the next. It has been demonstrated during the past decade that the post-translational modifications of histone proteins within the chromosome impact chromatin structure, gene transcription, and epigenetic information. Multiple modifications decorate each histone tail within the nucleosome, including some amino acids that can be modified in several different ways. Covalent modifications of histone tails known thus far include acetylation, phosphorylation, surnoylation, ubiquitination, and methylation. A large body of experimental evidence compiled during the past several years has demonstrated the impact of histone acetylation on transcriptional control. Although histone modification by methylation and ubiquitination was discovered long ago, it was only recently that functional roles for these modifications in transcriptional regulation began to surface. Highlighted in this review are the recent biochemical, molecular, cellular, and physiological functions of histone methylation and ubiquitination involved in the regulation of gene expression as determined by a combination of enzymological, structural, and genetic methodologies.
引用
收藏
页码:243 / 269
页数:27
相关论文
共 143 条
[1]   The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly [J].
Ahmad, K ;
Henikoff, S .
MOLECULAR CELL, 2002, 9 (06) :1191-1200
[2]   Epigenetic consequences of nucleosome dynamics [J].
Ahmad, K ;
Henikoff, S .
CELL, 2002, 111 (03) :281-284
[3]   RNAi and heterochromatin - a hushed-up affair [J].
Allshire, R .
SCIENCE, 2002, 297 (5588) :1818-1819
[4]  
[Anonymous], [No title captured]
[5]   X-chromosome inactivation: Counting, choice and initiation [J].
Avner, P ;
Heard, E .
NATURE REVIEWS GENETICS, 2001, 2 (01) :59-67
[6]   Histone methylation: Dynamic or static? [J].
Bannister, AJ ;
Schneider, R ;
Kouzarides, T .
CELL, 2002, 109 (07) :801-806
[7]   Arginine methylation: An emerging regulator of protein function [J].
Bedford, MT ;
Richard, S .
MOLECULAR CELL, 2005, 18 (03) :263-272
[8]   Methylation of histone H3 Lys 4 in coding regions of active genes [J].
Bernstein, BE ;
Humphrey, EL ;
Erlich, RL ;
Schneider, R ;
Bouman, P ;
Liu, JS ;
Kouzarides, T ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8695-8700
[9]   Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes [J].
Boggs, BA ;
Cheung, P ;
Heard, E ;
Spector, DL ;
Chinault, AC ;
Allis, CD .
NATURE GENETICS, 2002, 30 (01) :73-76
[10]   Gene silencing -: Trans-histone regulatory pathway in chromatin [J].
Briggs, SD ;
Xiao, TJ ;
Sun, ZW ;
Caldwell, JA ;
Shabanowitz, J ;
Hunt, DF ;
Allis, CD ;
Strahl, BD .
NATURE, 2002, 418 (6897) :498-498