Histone modification and the control of heterochromatic gene silencing in Drosophila

被引:159
作者
Ebert, Anja
Lein, Sandro
Schotta, Gunnar
Reuter, Gunter
机构
[1] Univ Halle Wittenberg, Genet Inst, Biologicum, D-06120 Halle, Germany
[2] Vienna Bioctr, Res Inst Mol Pathol, A-1030 Vienna, Austria
关键词
gene silencing; heterochromatin; histone modification; position-effect variegation;
D O I
10.1007/s10577-006-1066-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Covalent modifications of histones index structurally and functionally distinct chromatin domains in eukaryotic nuclei. Drosophila with its polytene chromosomes and developed genetics allows detailed cytological as well as functional analysis of epigenetic histone modifications involved in the control of gene expression pattern during development. All H3K9 mono- and dimethylation together with all H3K27 methylation states and H4K20 trimethylation are predominant marks of pericentric heterochromatin. In euchromatin, bands and interbands are differentially indexed. H3K4 and H3K36 methylation together with H3S10 phosphorylation are predominant marks of interband regions whereas in bands different H3K27 and H4K20 methylation states are combined with acetylation of H3K9 and H3K14. Genetic dissection of heterochromatic gene silencing in position-effect variegation (PEV) by Su(var) and E(var) mutations allowed identification and functional analysis of key factors controlling the formation of heterochromatin. SU(VAR)3-9 association with heterochromatic sequences followed by H3K9 methylation initiates the establishment of repressive SU(VAR)3-9/HP1/SU(VAR)3-7 protein complexes. Differential enzymatic activities of novel point mutants demonstrate that the silencing potential of SU(VAR)3-9 is mainly determined by the kinetic properties of the HMTase reaction. In Su(var)3-9(ptn) a significantly enhanced enzymatic activity results in H3K9 hypermethylation, enhanced gene silencing and extensive chromatin compaction. Mutations in factors controlling active histone modification marks revealed the dynamic balance between euchromatin and heterochromatin. Further analysis and definition of Su(var) and E(var) genes in Drosophila will increase our understanding of the molecular hierarchy of processes controlling higher-order structures in chromatin.
引用
收藏
页码:377 / 392
页数:16
相关论文
共 97 条
[1]   Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31 [J].
Aagaard, L ;
Laible, G ;
Selenko, P ;
Schmid, M ;
Dorn, R ;
Schotta, G ;
Kuhfittig, S ;
Wolf, A ;
Lebersorger, A ;
Singh, PB ;
Reuter, G ;
Jenuwein, T .
EMBO JOURNAL, 1999, 18 (07) :1923-1938
[2]   Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila [J].
Akhtar, A ;
Becker, PB .
MOLECULAR CELL, 2000, 5 (02) :367-375
[3]   MUTATIONS DEREPRESSING SILENT CENTROMERIC DOMAINS IN FISSION YEAST DISRUPT CHROMOSOME SEGREGATION [J].
ALLSHIRE, RC ;
NIMMO, ER ;
EKWALL, K ;
JAVERZAT, JP ;
CRANSTON, G .
GENES & DEVELOPMENT, 1995, 9 (02) :218-233
[4]   The Drosophila BRM complex facilitates global transcription by RNA polymerase II [J].
Armstrong, JA ;
Papoulas, O ;
Daubresse, G ;
Sperling, AS ;
Lis, JT ;
Scott, MP ;
Tamkun, JW .
EMBO JOURNAL, 2002, 21 (19) :5245-5254
[5]   The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes [J].
Baumbusch, LO ;
Thorstensen, T ;
Krauss, V ;
Fischer, A ;
Naumann, K ;
Assalkhou, R ;
Schulz, I ;
Reuter, G ;
Aalen, RB .
NUCLEIC ACIDS RESEARCH, 2001, 29 (21) :4319-4333
[6]   RETRACTED: Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1 (Retracted article. See vol. 521, pg. 110, 2015) [J].
Beisel, C ;
Imhof, A ;
Greene, J ;
Kremmer, E ;
Sauer, F .
NATURE, 2002, 419 (6909) :857-862
[7]   CYTOGENETIC AND MOLECULAR ASPECTS OF POSITION-EFFECT VARIEGATION IN DROSOPHILA-MELANOGASTER [J].
BELYAEVA, ES ;
DEMAKOVA, OV ;
UMBETOVA, GH ;
ZHIMULEV, IF .
CHROMOSOMA, 1993, 102 (08) :583-590
[8]   CYTOGENETIC AND MOLECULAR ASPECTS OF POSITION EFFECT VARIEGATION IN DROSOPHILA .3. CONTINUOUS AND DISCONTINUOUS COMPACTION OF CHROMOSOMAL MATERIAL AS A RESULT OF POSITION EFFECT VARIEGATION [J].
BELYAEVA, ES ;
ZHIMULEV, IF .
CHROMOSOMA, 1991, 100 (07) :453-466
[9]  
Birve A, 2001, DEVELOPMENT, V128, P3371
[10]   ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3 [J].
Byrd, KN ;
Shearn, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (20) :11535-11540