Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo

被引:72
作者
West, CE [1 ]
Waterworth, WM [1 ]
Story, GW [1 ]
Sunderland, PA [1 ]
Jiang, Q [1 ]
Bray, CM [1 ]
机构
[1] Univ Manchester, Sch Biol Sci, Manchester M13 9PT, Lancs, England
关键词
non-homologous end joining; double-strand break; bleomycin; menadione; Arabidopsis thaliana;
D O I
10.1046/j.1365-313X.2002.01370.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Double-strand breaks (DSBs) in DNA may occur spontaneously in the cell or be induced experimentally by gamma-irradiation, and represent one of the most serious threats to genomic integrity. Non-homologous end joining (NHEJ) rather than homologous recombination appears to be the major pathway for DSB repair in humans and plants, and it may also be the major route whereby T-DNA integrates into the plant genome during cell transformation. In yeast and mammals, the exposed ends of damaged DNA are bound with high affinity by a dimer of Ku70 and Ku80 proteins, which protects the ends from exonucleases and juxtaposes the two ends of the DSB, independent of sequence homology. Here we report the functional characterization of Ku70 and Ku80 from Arabidopsis thaliana, and demonstrate that AtKu80 and AtKu70 form a heterodimer with DNA binding activity that is specific for DNA ends. An atku80 knockout mutant shows hypersensitivity to the DNA-damaging agents menadione and bleomycin, consistent with a role for AtKu80 in the repair of DSBs in vivo in Arabidopsis.
引用
收藏
页码:517 / 528
页数:12
相关论文
共 57 条
[1]   DNA ligase IV-deficient cells are more resistant to ionizing radiation in the absence of Ku70: Implications for DNA double-strand break repair [J].
Adachi, N ;
Ishino, T ;
Ishii, Y ;
Takeda, S ;
Koyama, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (21) :12109-12113
[2]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[3]   DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes [J].
Bailey, SM ;
Meyne, J ;
Chen, DJ ;
Kurimasa, A ;
Li, GC ;
Lehnert, BE ;
Goodwin, EH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :14899-14904
[4]   Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance [J].
Boulton, SJ ;
Jackson, SP .
NUCLEIC ACIDS RESEARCH, 1996, 24 (23) :4639-4648
[5]   Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways [J].
Boulton, SJ ;
Jackson, SP .
EMBO JOURNAL, 1996, 15 (18) :5093-5103
[6]   Molecular genetics of DNA repair in higher plants [J].
Britt, AB .
TRENDS IN PLANT SCIENCE, 1999, 4 (01) :20-25
[7]  
BURGER RM, 1981, J BIOL CHEM, V256, P1636
[8]   DNA looping by Ku and the DNA-dependent protein kinase [J].
Cary, RB ;
Peterson, SR ;
Wang, JT ;
Bear, DG ;
Bradbury, EM ;
Chen, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (09) :4267-4272
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   DNA-end-joining: from yeast to man [J].
Critchlow, SE ;
Jackson, SP .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (10) :394-398