Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting

被引:294
作者
Kibria, M. G. [1 ]
Zhao, S. [1 ]
Chowdhury, F. A. [1 ]
Wang, Q. [1 ]
Nguyen, H. P. T. [1 ]
Trudeau, M. L. [2 ]
Guo, H. [3 ]
Mi, Z. [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0E9, Canada
[2] Hydro Quebec, IREQ, Sci Mat, Varennes, PQ J3X 1S1, Canada
[3] McGill Univ, Ctr Phys Mat, Dept Phys, Montreal, PQ H3A 2T8, Canada
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
加拿大自然科学与工程研究理事会;
关键词
SEMICONDUCTOR NANOWIRES; HYDROGEN-PRODUCTION; TIO2; ARRAYS;
D O I
10.1038/ncomms4825
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solar water splitting is one of the key steps in artificial photosynthesis for future carbonneutral, storable and sustainable source of energy. Here we show that one of the major obstacles for achieving efficient and stable overall water splitting over the emerging nanostructured photocatalyst is directly related to the uncontrolled surface charge properties. By tuning the Fermi level on the nonpolar surfaces of gallium nitride nanowire arrays, we demonstrate that the quantum efficiency can be enhanced by more than two orders of magnitude. The internal quantum efficiency and activity on p-type gallium nitride nanowires can reach similar to 51% and similar to 4.0 mol hydrogen h(-1) g(-1), respectively. The nanowires remain virtually unchanged after over 50,000 mu mol gas (hydrogen and oxygen) is produced, which is more than 10,000 times the amount of photocatalyst itself (similar to 4.6 mmol). The essential role of Fermi-level tuning in balancing redox reactions and in enhancing the efficiency and stability is also elucidated.
引用
收藏
页数:6
相关论文
共 38 条
  • [21] A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting
    Liu, Chong
    Tang, Jinyao
    Chen, Hao Ming
    Liu, Bin
    Yang, Peidong
    [J]. NANO LETTERS, 2013, 13 (06) : 2989 - 2992
  • [22] Photocatalyst releasing hydrogen from water - Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight.
    Maeda, K
    Teramura, K
    Lu, DL
    Takata, T
    Saito, N
    Inoue, Y
    Domen, K
    [J]. NATURE, 2006, 440 (7082) : 295 - 295
  • [23] Photocatalytic water splitting using semiconductor particles: History and recent developments
    Maeda, Kazuhiko
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2011, 12 (04) : 237 - 268
  • [24] Band bowing and band alignment in InGaN alloys
    Moses, Poul Georg
    Van de Walle, Chris G.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (02)
  • [25] Physical chemistry of semiconductor-liquid interfaces
    Nozik, AJ
    Memming, R
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) : 13061 - 13078
  • [26] Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts
    Reece, Steven Y.
    Hamel, Jonathan A.
    Sung, Kimberly
    Jarvi, Thomas D.
    Esswein, Arthur J.
    Pijpers, Joep J. H.
    Nocera, Daniel G.
    [J]. SCIENCE, 2011, 334 (6056) : 645 - 648
  • [27] Transient surface photovoltage in n- and p-GaN as probed by x-ray photoelectron spectroscopy
    Sezen, Hikmet
    Ozbay, Ekmel
    Aktas, Ozgur
    Suzer, Sefik
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (11)
  • [28] Photocatalytic Water Oxidation at the GaN (10(1)over-bar0)-Water Interface
    Shen, Xiao
    Small, Yolanda A.
    Wang, Jue
    Allen, Philip B.
    Fernandez-Serra, Maria V.
    Hybertsen, Mark S.
    Muckerman, James T.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (32) : 13695 - 13704
  • [29] Doping of III-Nitride Nanowires Grown by Molecular Beam Epitaxy
    Stoica, Toma
    Calarco, Raffaella
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (04) : 859 - 868
  • [30] Artificial photosynthesis for solar water-splitting
    Tachibana, Yasuhiro
    Vayssieres, Lionel
    Durrant, James R.
    [J]. NATURE PHOTONICS, 2012, 6 (08) : 511 - 518