Automatic variogram parameter extraction for textural classification of the panchromatic IKONOS imagery

被引:40
作者
Chen, Q [1 ]
Gong, P
机构
[1] Univ Calif Berkeley, CAMFER, Berkeley, CA 94720 USA
[2] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210093, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2004年 / 42卷 / 05期
基金
美国国家卫生研究院;
关键词
IKONOS; range; sill; texture; variogram;
D O I
10.1109/TGRS.2004.825591
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Range and sill are two important parameters of a variogram. Their extraction usually involves experimental fitting of variograms using models specified by the analyst and requires much use of trial and error. The objective of this paper is to design an algorithm for extracting the range and sill of a variogram automatically without fitting a model. Combined with the semivariance at the lag of one pixel (gamma(1)), the extracted range and sill were applied to the textural classification of a panchromatic IKONOS image over Xichang, Sichuan Province, China. Results show that any of these three parameters can lead to the increase of the classification accuracy. When all three parameters were used with the raw image data, the average kappa statistic for five window sizes increased from 0.24 to 0.76, indicating promise of the range and sill in texture classification.
引用
收藏
页码:1106 / 1115
页数:10
相关论文
共 36 条
[11]   Improving the estimation of noise from NOAA AVHRR NDVI for Africa using geostatistics [J].
Chappell, A ;
Seaquist, JW ;
Eklundh, L .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2001, 22 (06) :1067-1080
[12]   Computing geostatistical image texture for remotely sensed data classification [J].
Chica-Olmo, M ;
Abarca-Hernández, F .
COMPUTERS & GEOSCIENCES, 2000, 26 (04) :373-383
[13]   MEDIAN BASED COVARIOGRAM ESTIMATORS REDUCE BIAS [J].
CRESSIE, N ;
GLONEK, G .
STATISTICS & PROBABILITY LETTERS, 1984, 2 (05) :299-304
[14]   THE SEMIVARIOGRAM IN REMOTE-SENSING - AN INTRODUCTION [J].
CURRAN, PJ .
REMOTE SENSING OF ENVIRONMENT, 1988, 24 (03) :493-507
[15]   Geostatistics and remote sensing [J].
Curran, PJ ;
Atkinson, PM .
PROGRESS IN PHYSICAL GEOGRAPHY, 1998, 22 (01) :61-78
[16]  
Friedman J., 2001, The elements of statistical learning, V1, DOI DOI 10.1007/978-0-387-21606-5
[17]  
Friedman J.H., 1984, 5 STANF U DEP STAT L
[18]  
GONG P, 1992, PHOTOGRAMM ENG REM S, V58, P423
[19]   STATISTICAL AND STRUCTURAL APPROACHES TO TEXTURE [J].
HARALICK, RM .
PROCEEDINGS OF THE IEEE, 1979, 67 (05) :786-804
[20]   A METHOD FOR SEA-FLOOR CLASSIFICATION USING DIRECTIONAL VARIOGRAMS, DEMONSTRATED FOR DATA FROM THE WESTERN FLANK OF THE MID-ATLANTIC RIDGE [J].
HERZFELD, UC .
MATHEMATICAL GEOLOGY, 1993, 25 (07) :901-924