Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells

被引:317
作者
Murphy, KM
Ranganathan, V
Farnsworth, ML
Kavallaris, M
Lock, RB
机构
[1] Childrens Canc Inst Australia Med Res, Randwick, NSW 2031, Australia
[2] Univ Louisville, Dept Microbiol & Immunol, Louisville, KY 40202 USA
[3] Univ Louisville, J Graham Brown Canc Ctr, Louisville, KY 40202 USA
关键词
apoptosis; Bax; etoposide; staurosporine;
D O I
10.1038/sj.cdd.4400597
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The pro-apoptotic protein, Bax, has been reported to translocate from cytosol to mitochondria following exposure of cells to apoptotic stresses including cytokine withdrawal and treatment with glucocorticoids and cytotoxic drugs. These observations, coupled with reports showing that Bax causes the release of mitochondrial cytochrome c, implicate Bax as a central mediator of the apoptotic process. In this report we demonstrate by subcellular fractionation a significant shift in Bax localization from cytosol to cellular membranes in two human tumor cell lines exposed to staurosporine or etoposide. Immunofluorescence studies confirmed that Bax specifically relocalized to the mitochondria, This redistribution of Bax occurred in concert with, or just prior to, proteolytic processing of procaspase-3, activation of DEVD-specific cleavage activity and degradation of poly(ADP-ribose) polymerase, However, Bax membrane translocation was independent of caspase activity as determined using the broad-range caspase inhibitor z-VAD-fmk, High level overexpression of the anti-apoptotic protein Bcl-2 prevented Bax redistribution to the mitochondria, caspase activation and apoptosis following exposure to staurosporine or etoposide, These data confirm the role of Bax in mitochondrial cytochrome c release, and indicate that prevention of Bax translocation to the mitochondrial membrane represents a novel mechanism by which Bcl-2 inhibits drug-induced apoptosis.
引用
收藏
页码:102 / 111
页数:10
相关论文
共 43 条
[1]   Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization [J].
Bossy-Wetzel, E ;
Newmeyer, DD ;
Green, DR .
EMBO JOURNAL, 1998, 17 (01) :37-49
[2]   BCL-2 FAMILY: Regulators of cell death [J].
Chao, DT ;
Korsmeyer, SJ .
ANNUAL REVIEW OF IMMUNOLOGY, 1998, 16 :395-419
[3]   Caspases: the executioners of apoptosis [J].
Cohen, GM .
BIOCHEMICAL JOURNAL, 1997, 326 :1-16
[4]   Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis [J].
Desagher, S ;
Osen-Sand, A ;
Nichols, A ;
Eskes, R ;
Montessuit, S ;
Lauper, S ;
Maundrell, K ;
Antonsson, B ;
Martinou, JC .
JOURNAL OF CELL BIOLOGY, 1999, 144 (05) :891-901
[5]   Expression of Bcl-2 in human epithelial tumor (HeLa) cells enhances clonogenic survival following exposure to 5-fluoro-2′-deoxyuridine or staurosporine, but not following exposure to etoposide or doxorubicin [J].
Elliott, MJ ;
Stribinskiene, L ;
Lock, RB .
CANCER CHEMOTHERAPY AND PHARMACOLOGY, 1998, 41 (06) :457-463
[6]   Regulated targeting of BAX to mitochondria [J].
Goping, IS ;
Gross, A ;
Lavoie, JN ;
Nguyen, M ;
Jemmerson, R ;
Roth, K ;
Korsmeyer, SJ ;
Shore, GC .
JOURNAL OF CELL BIOLOGY, 1998, 143 (01) :207-215
[7]   Mitochondria and apoptosis [J].
Green, DR ;
Reed, JC .
SCIENCE, 1998, 281 (5381) :1309-1312
[8]   Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis [J].
Gross, A ;
Jockel, J ;
Wei, MC ;
Korsmeyer, SJ .
EMBO JOURNAL, 1998, 17 (14) :3878-3885
[9]   Differential requirement for Caspase 9 in apoptotic pathways in vivo [J].
Hakem, R ;
Hakem, A ;
Duncan, GS ;
Henderson, JT ;
Woo, M ;
Soengas, MS ;
Elia, A ;
de la Pompa, JL ;
Kagi, D ;
Khoo, W ;
Potter, J ;
Yoshida, R ;
Kaufman, SA ;
Lowe, SW ;
Penninger, JM ;
Mak, TW .
CELL, 1998, 94 (03) :339-352
[10]   Cytosol-to-membrane redistribution of Bax and Bcl-X-L during apoptosis [J].
Hsu, YT ;
Wolter, KG ;
Youle, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3668-3672