Functional effects of auxiliary β4-subunit on rat large-conductance Ca2+-activated K+ channel

被引:59
作者
Ha, TS [1 ]
Heo, MS [1 ]
Park, CS [1 ]
机构
[1] Kwangju Inst Sci & Technol, Dept Life Sci, Mol Neurobiol Lab, Gwangju 500712, South Korea
关键词
D O I
10.1016/S0006-3495(04)74339-8
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Large-conductance calcium-activated potassium (BKCa) channels are composed of the pore-forming alpha-subunit and the auxiliary beta-subunits. The beta4-subunit is dominantly expressed in the mammalian central nervous system. To understand the physiological roles of the beta4-subunit on the BKCa channel alpha-subunit (Slo), we isolated a full-length complementary DNA of rat beta4-subunit (rbeta4), expressed heterolgously in Xenopus oocytes, and investigated the detailed functional effects using electrophysiological means. When expressed together with rat Slo (rSlo), rbeta4 profoundly altered the gating characteristics of the Slo channel. At a given concentration of intracellular Ca2+, rSlo/rbeta4 channels were more sensitive to transmembrane voltage changes. The activation and deactivation rates of macroscopic currents were decreased in a Ca2+-dependent manner. The channel activation by Ca2+ became more cooperative by the coexpression of rbeta4. Single-channel recordings showed that the increased Hill coefficient for Ca2+ was due to the changes in the open probability of the rSlo/rbeta4 channel. Single BKCa channels composed of rSlo and rbeta4 also exhibited slower kinetics for steady-state gating compared with rSlo channels. Dwell times of both open and closed events were significantly increased. Because BKCa channels are known to modulate neuroexcitability and the expression of the beta4-subunit is highly concentrated in certain subregions of brain, the electrophysiological properties of individual neurons should be affected profoundly by the expression of this second subunit.
引用
收藏
页码:2871 / 2882
页数:12
相关论文
共 36 条
[1]   CALCIUM-ACTIVATED POTASSIUM CHANNELS EXPRESSED FROM CLONED COMPLEMENTARY DNAS [J].
ADELMAN, JP ;
SHEN, KZ ;
KAVANAUGH, MP ;
WARREN, RA ;
WU, YN ;
LAGRUTTA, A ;
BOND, CT ;
NORTH, RA .
NEURON, 1992, 9 (02) :209-216
[2]   A COMPONENT OF CALCIUM-ACTIVATED POTASSIUM CHANNELS ENCODED BY THE DROSOPHILA-SLO LOCUS [J].
ATKINSON, NS ;
ROBERTSON, GA ;
GANETZKY, B .
SCIENCE, 1991, 253 (5019) :551-555
[3]   HKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel β subunit family [J].
Behrens, R ;
Nolting, A ;
Reimann, F ;
Schwarz, M ;
Waldschütz, R ;
Pongs, O .
FEBS LETTERS, 2000, 474 (01) :99-106
[4]   PHOSPHORYLATION AND DEPHOSPHORYLATION MODULATE A CA2+-ACTIVATED K+ CHANNEL IN RAT PEPTIDERGIC NERVE-TERMINALS [J].
BIELEFELDT, K ;
JACKSON, MB .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 475 (02) :241-254
[5]   Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4 [J].
Brenner, R ;
Jegla, TJ ;
Wickenden, A ;
Liu, Y ;
Aldrich, RW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (09) :6453-6461
[6]   MSLO, A COMPLEX MOUSE GENE ENCODING MAXI CALCIUM-ACTIVATED POTASSIUM CHANNELS [J].
BUTLER, A ;
TSUNODA, S ;
MCCOBB, DP ;
WEI, A ;
SALKOFF, L .
SCIENCE, 1993, 261 (5118) :221-224
[7]   Role of the β1 subunit in large-conductance Ca2+-activated K+ channel gating energetics -: Mechanisms of enhanced Ca2+ sensitivity [J].
Cox, DH ;
Aldrich, RW .
JOURNAL OF GENERAL PHYSIOLOGY, 2000, 116 (03) :411-432
[8]   Allosteric gating of a large conductance Ca-activated K+ channel [J].
Cox, DH ;
Cui, J ;
Aldrich, RW .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 110 (03) :257-281
[9]   Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca-activated K+ channels [J].
Cui, J ;
Cox, DH ;
Aldrich, RW .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 109 (05) :647-673
[10]  
Dworetzky SI, 1996, J NEUROSCI, V16, P4543