In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration

被引:162
作者
Chen, JC [1 ]
Li, QL [1 ]
Elimelech, M [1 ]
机构
[1] Yale Univ, Dept Chem Engn, Environm Engn Program, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
concentration polarization; membrane fouling; cake formation; in situ monitoring techniques; permeate flux decline; membrane filtration; fouling mechanisms;
D O I
10.1016/j.cis.2003.10.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Membrane fouling and subsequent permeate flux decline are inevitably associated with pressure-driven membrane processes. Despite the myriad of studies on membrane fouling and related phenomena-concentration polarization, cake formation and pore plugging-the fundamental mechanisms and processes involved are still not fully understood. A key to breakthroughs in understanding of fouling phenomena is the development of novel, non-invasive, in situ quantification of physico-chemical processes occurring during membrane filtration. State-of-the-art in situ monitoring techniques for concentration polarization, cake formation and fouling phenomena in pressure-driven membrane filtration are critically reviewed in this paper. The review addresses the physical principles and applications of the techniques as well as their strengths and deficiencies. Emphasis is given to techniques relevant to fouling phenomena where particles and solutes accumulate on the membrane surface such that pore plugging is negligible. The relevance of the techniques to specific processes and mechanisms involved in membrane fouling is also elaborated and discussed. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 108
页数:26
相关论文
共 67 条
[1]   An investigation of concentration polarization phenomena in membrane filtration of colloidal silica suspensions by NMR micro-imaging [J].
Airey, D ;
Yao, S ;
Wu, J ;
Chen, V ;
Fane, AG ;
Pope, JM .
JOURNAL OF MEMBRANE SCIENCE, 1998, 145 (02) :145-158
[2]   Particle deposition and layer formation at the crossflow microfiltration [J].
Altmann, J ;
Ripperger, S .
JOURNAL OF MEMBRANE SCIENCE, 1997, 124 (01) :119-128
[3]   Micro total analysis systems. 2. Analytical standard operations and applications [J].
Auroux, PA ;
Iossifidis, D ;
Reyes, DR ;
Manz, A .
ANALYTICAL CHEMISTRY, 2002, 74 (12) :2637-2652
[4]   THE BEHAVIOR OF SUSPENSIONS AND MACROMOLECULAR SOLUTIONS IN CROSS-FLOW MICROFILTRATION [J].
BELFORT, G ;
DAVIS, RH ;
ZYDNEY, AL .
JOURNAL OF MEMBRANE SCIENCE, 1994, 96 (1-2) :1-58
[5]   A unified model for flux prediction during batch cell ultrafiltration [J].
Bhattacharjee, S ;
Sharma, A ;
Bhattacharya, PK .
JOURNAL OF MEMBRANE SCIENCE, 1996, 111 (02) :243-258
[6]   Concentration polarization of interacting solute particles in cross-flow membrane filtration [J].
Bhattacharjee, S ;
Kim, AS ;
Elimelech, M .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 212 (01) :81-99
[7]   THEORETICAL DESCRIPTIONS OF MEMBRANE FILTRATION OF COLLOIDS AND FINE PARTICLES - AN ASSESSMENT AND REVIEW [J].
BOWEN, WR ;
JENNER, F .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 1995, 56 :141-200
[8]   VELOCITY AND DIFFUSION IMAGING IN DYNAMIC NMR MICROSCOPY [J].
CALLAGHAN, PT ;
XIA, Y .
JOURNAL OF MAGNETIC RESONANCE, 1991, 91 (02) :326-352
[9]   NMR MICROSCOPY OF DYNAMIC DISPLACEMENTS - K-SPACE AND Q-SPACE IMAGING [J].
CALLAGHAN, PT ;
ECCLES, CD ;
XIA, Y .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1988, 21 (08) :820-822
[10]   Electrical impedance spectroscopy characterisation of conducting membranes I. Theory [J].
Chilcott, TC ;
Chan, M ;
Gaedt, L ;
Nantawisarakul, T ;
Fane, AG ;
Coster, HGL .
JOURNAL OF MEMBRANE SCIENCE, 2002, 195 (02) :153-167