Nearly unbiased maximum likelihood estimation for the beta distribution

被引:47
作者
Cribari-Neto, F [1 ]
Vasconcellos, KLP [1 ]
机构
[1] Univ Fed Pernambuco, CCEN, Dept Estat, BR-50740540 Recife, PE, Brazil
关键词
beta distribution; bias correction; bootstrap; maximum likelihood estimation;
D O I
10.1080/00949650212144
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We analyze the finite-sample behavior of three second-order bias-corrected alternatives to the maximum likelihood estimator of the parameters that index the beta distribution. The three finite-sample corrections we consider are the conventional second-order bias corrected estimator (Cordeiro et al., 1997), the alternative approach introduced by Firth (1993) and the bootstrap bias correction. We present numerical results comparing the performance of these estimators for thirty-six different values of the parameter vector. Our results reveal that analytical bias corrections considerably outperform numerical bias corrections obtained from bootstrapping schemes.
引用
收藏
页码:107 / 118
页数:12
相关论文
共 15 条
[1]  
Bury K., 1999, STAT DISTRIBUTIONS E
[2]   Bias-corrected maximum likelihood estimation for the beta distribution [J].
Cordeiro, GM ;
DaRocha, EC ;
DaRocha, JGC ;
CribariNeto, F .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 58 (01) :21-35
[3]   A GENERAL DEFINITION OF RESIDUALS [J].
COX, DR ;
SNELL, EJ .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1968, 30 (02) :248-&
[4]   SMALL SAMPLE COMPARISON OF ESTIMATION METHODS FOR THE BETA DISTRIBUTION [J].
DISHON, M ;
WEISS, GH .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1980, 11 (01) :1-11
[5]  
DOORNIK JA, 1999, OBJECT ORIENTED MATR
[6]   1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE [J].
EFRON, B .
ANNALS OF STATISTICS, 1979, 7 (01) :1-26
[7]  
Efron B., 1993, INTRO BOOTSTRAP, V1st ed., DOI DOI 10.1201/9780429246593
[8]   On bootstrap and analytical bias corrections [J].
Ferrari, SLP ;
Cribari-Neto, F .
ECONOMICS LETTERS, 1998, 58 (01) :7-15
[9]   BIAS REDUCTION OF MAXIMUM-LIKELIHOOD-ESTIMATES [J].
FIRTH, D .
BIOMETRIKA, 1993, 80 (01) :27-38
[10]  
Fletcher R., 1981, PRACTICAL METHODS OP